版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市静海区独流中学四校联考高一数学第一学期期末考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知函数的定义域为,若是奇函数,则A. B.C. D.2.某人去上班,先跑步,后步行.如果y表示该人离单位的距离,x表示出发后的时间,那么下列图象中符合此人走法的是().A. B.C. D.3.命题“”的否定是()A. B.C. D.4.过点(1,0)且与直线x-2y-2=0平行的直线方程是()A.x-2y-1=0 B.x-2y+1=0C.2x+y-2=0 D.x+2y-1=05.尽管目前人类还无法准确预报地震,但科学研究表明,地震时释放出的能量E(单位:焦耳)与地震里氏M震级之间的关系为lgE=4.8+1.5M.已知两次地震的能量与里氏震级分别为Ei与Mii=1,2,若A.103C.lg3 D.6.为了抗击新型冠状病毒肺炎,保障师生安全,学校决定每天对教室进行消毒工作,已知药物释放过程中,室内空气中含药量y()与时间t(h)成正比();药物释放完毕后,y与t的函数关系式为(a为常数,),据测定,当空气中每立方米的含药量降低到0.5()以下时,学生方可进教室,则学校应安排工作人员至少提前()分钟进行消毒工作A.25 B.30C.45 D.607.已知函数,则A. B.0C.1 D.8.如图所示,将等腰直角△ABC沿斜边BC上的高AD折成一个二面角,使得∠B′AC=60°.那么这个二面角大小是()A.30° B.60°C.90° D.120°9.已知,则的最小值为()A.2 B.3C.4 D.510.设函数,A.3 B.6C.9 D.1211.如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交 B.平行C.异面 D.以上都有可能12.已知集合,集合,则图中阴影部分表示的集合为()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.当时,函数的值总大于,则的取值范围是________14.设函数fx=ex-1,x≥a-xx2-5x+6,x<a,则当时,15.已知函数(,,)的部分图象如图,则函数的单调递增区间为______.16.利用随机数表法对一个容量为90,编号为00,01,02,…,89的产品进行抽样检验,抽取一个容量为10的样本,若选定从第2行第3列的数开始向右读数(下面摘取了随机数表中的第1行至第5行),根据下图,读出的第3个数是___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数的部分图象如图所示,点为函数的图象与y轴的一个交点,点B为函数图象上的一个最高点,且点B的横坐标为,点为函数的图象与x轴的一个交点(1)求函数的解析式;(2)已知函数的值域为,求a,b的值18.如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.19.已知函数,.(1)若在区间上是单调函数,则的取值范围;(2)在(1)的条件下,是否存在实数,使得函数与函数的图象在区间上有唯一的交点,若存在,求出的范围,若不存在,请说明理由.20.已知函数(1)求函数的零点;(2)若实数满足,求的取值范围.21.已知直线经过点和点.(Ⅰ)求直线的方程;(Ⅱ)若圆的圆心在直线上,并且与轴相切于点,求圆的方程22.运货卡车以千米/时的速度匀速行驶300千米,按交通法规限制(单位千米/时),假设汽车每小时耗油费用为元,司机的工资是每小时元.(不考虑其他因所素产生的费用)(1)求这次行车总费用(元)关于(千米/时)的表达式;(2)当为何值时,这次行车的总费用最低?求出最低费用的值
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】由为奇函数,可得,求得,代入计算可得所求值【详解】是奇函数,可得,且时,,可得,则,可得,则,故选D【点睛】本题考查函数的奇偶性的判断和运用,考查定义法和运算能力,属于基础题2、D【解析】根据随时间的推移该人所走的距离的大小的变化快慢,从而即可获得问题的解答,即先利用时的函数值排除两项,再利用曲线的斜率反映行进速度的特点选出正确结果【详解】解:由题意可知:时所走的路程为0,离单位的距离为最大值,排除A、C,随着时间的增加,先跑步,开始时随的变化快,后步行,则随的变化慢,所以适合的图象为D;故选:D3、B【解析】根据特称命题的否定为全称命题,将并否定原结论,写出命题的否定即可.【详解】由原命题为特称命题,故其否定为“”.故选:B4、A【解析】设出直线方程,利用待定系数法得到结果.【详解】设与直线平行的直线方程为,将点代入直线方程可得,解得则所求直线方程为.故A正确【点睛】本题主要考查两直线的平行问题,属容易题.两直线平行倾斜角相等,所以斜率相等或均不存在.所以与直线平行的直线方程可设为5、A【解析】利用对数运算和指数与对数互化求解.【详解】由题意得:lgE1=4.8+1.5两式相减得:lgE又因为M2所以E2故选:A6、C【解析】计算函数解析式,取计算得到答案.【详解】∵函数图像过点,∴,当时,取,解得小时分钟,所以学校应安排工作人员至少提前45分钟进行消毒工作.故选:C.7、C【解析】根据自变量所在的范围先求出,然后再求出【详解】由题意得,∴故选C【点睛】根据分段函数的解析式求函数值时,首先要分清自变量所属的范围,然后再代入解析式后可得结果,属于基础题8、C【解析】根据折的过程中不变的角的大小、结合二面角的定义进行判断即可.【详解】因为AD是等腰直角△ABC斜边BC上的高,所以,因此是二面角的平面角,∠B′AC=60°.所以是等边三角形,因此,在中.故选:C【点睛】本题考查了二面角的判断,考查了数学运算能力,属于基础题.9、A【解析】由可得,将整理为,再利用基本不等式即可求解.【详解】因为,所以,所以,当且仅当,即时取等号,所以的最小值为.故选:A10、C【解析】.故选C.11、B【解析】因为G1,G2分别是△SAB和△SAC的重心,所以,所以.又因为M、N分别为AB、AC的中点,所以MN//BC,所以考点:线面平行的判定定理;线面平行的性质定理;公理4;重心的性质点评:我们要掌握重心性质:若G1为△SAB的重心,M为AB中点,则12、B【解析】由阴影部分表示的集合为,然后根据集合交集的概念即可求解.【详解】因为阴影部分表示的集合为由于.故选:B.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、或,【解析】由指数函数的图象和性质可得即可求解.【详解】因为时,函数的值总大于,根据指数函数的图象和性质可得,解得:或,故答案为:或,14、①.②.【解析】当时得到,令,再利用定义法证明在上单调递减,从而得到,令,,根据指数函数的性质得到函数的单调性,即可求出的最小值,即可得到的最小值;分别求出与的零点,根据恰有两个零点,即可求出的取值范围;【详解】解:当时,令,,设且,则因为且,所以,,所以,所以,所以在上单调递减,所以,令,,函数在定义域上单调递增,所以,所以的最小值为;对于,令,即,解得,对于,令,即,解得或或,因为fx=ex-1,x≥a-xx2-5x+6,x<a恰有两个零点,则和一定为的零点,不为的零点,所以,即;故答案为:;;15、【解析】由函数的图象得到函数的周期,同时根据图象的性质求得一个单调增区间,然后利用周期性即可写出所有的增区间.【详解】由图可知函数f(x)的最小正周期.如图所示,一个周期内的最低点和最高点分别记作,分别作在轴上的射影,记作,根据的对称性可得的横坐标分别为,∴是函数f(x)的一个单调增区间,∴函数的单调增区间是,故答案为:,【点睛】本题关键在于掌握函数图象的对称性和周期性.一般往往先从函数的图象确定函数中的各个参数的值,再利用函数的解析式和正弦函数的性质求得单调区间,但是直接由图象得到函数的周期,并根据函数的图象的性质求得一个单调增区间,进而写出所有的增区间,更为简洁.16、75【解析】根据随机数表法进行抽样即可.【详解】从随机数表的第2行第3列的数开始向右读数,第一个编号为62,符合;第二个编号为38,符合;第三个编号为97,大于89,应舍去;下一个编号为75,符合.所以读出的第3个数是:75.故答案为:75.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)或【解析】(1)根据图象可得函数的周期,利用求出,根据五点画图法求出,根据点A坐标求出A,进而得出解析式;(2)根据三角函数的性质求出的值域,由(1)知,对的取值分类讨论,列出方程组,解之即可.【小问1详解】由函数的部分图象可知,函数的周期,可得,由五点画图法可知,可得,有,又由,可得,故有函数的解析式为;【小问2详解】由(1)知,函数的值域为.①当时,解得;②当时,解得由上知或18、(1)证明略(2)【解析】(Ⅰ)要证平面,由已知平面,已经有,因此在直角梯形中证明即可,通过计算得,而是中点,则有;(Ⅱ)PB与平面ABCD所成的角是,下面关键是作出PB与平面PAE所成的角,由(Ⅰ)作,分别与相交于,连接,则是PB与平面PAE所成的角,由这两个角相等,可得,同样在直角梯形中可计算出,也即四棱锥P-ABCD的高,体积可得.另外也可建立空间直角坐标系,通过空间向量法求得结论,第(Ⅱ)小题中关键是求点的坐标,注意这里直线与平面所成的角相等转化为直线与平面的法向量的夹角相等试题解析:解法1(Ⅰ如图(1)),连接AC,由AB=4,,是的中点,所以所以而内的两条相交直线,所以CD⊥平面PAE(Ⅱ)过点B作由(Ⅰ)CD⊥平面PAE知,BG⊥平面PAE.于是为直线PB与平面PAE所成的角,且由知,为直线与平面所成的角由题意,知因为所以由所以四边形是平行四边形,故于是在中,所以于是又梯形的面积为所以四棱锥的体积为解法2:如图(2),以A为坐标原点,所在直线分别为建立空间直角坐标系.设则相关的各点坐标为:(Ⅰ)易知因为所以而是平面内的两条相交直线,所以(Ⅱ)由题设和(Ⅰ)知,分别是,的法向量,而PB与所成的角和PB与所成的角相等,所以由(Ⅰ)知,由故解得又梯形ABCD的面积为,所以四棱锥的体积为.考点:线面垂直的判断,棱锥的体积19、(1)或;(2)存在,且的取值范围是.【解析】(1)分、两种情况讨论,根据函数在区间上单调可出关于的不等式,综合可得出实数的取值范围;(2)分、、、四种情况讨论,分析两个函数在区间上的单调性,根据已知条件可得出关于实数的不等式(组),综合可解得实数的取值范围.【小问1详解】解:当时在上单调递减.当时,是二次函数,其对称轴为直线,在区间上是单调函数,或,即或,解得:或或.综上:或.【小问2详解】解:①当时,单调递减,单调递增,则函数单调递增,因为,,由零点存在定理可知,存在唯一的使得,此时,函数与函数在区间上的图象有唯一的交点,合乎题意;②当时,二次函数的图象开口向下,对称轴为直线,所以,在上单调递减,单调递增,则函数在上单调递增,要使得函数与函数的图象在区间上有唯一的交点,则,解得,此时;③当时,二次函数的图象开口向上,对称轴,则在上单调递减,在上单调递增,则函数上单调递增,要使得函数与函数的图象在区间上有唯一的交点,则,解得,此时;④当时,二次函数的图象开口向上,对称轴,所以,在上单调递增,在上单调递增,则,,所以,在上恒成立,此时,函数与函数的图象在区间上没有交点.综上所述,实数的取值范围是.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.20、(1)零点为;(2).【解析】(1)分类讨论,函数对应方程根的个数,综合讨论结果,可得答案;(2)分析函数的奇偶性和单调性,进而可将不等式化为,解得的取值范围【详解】(1),或,函数的零点为;(2)当时,,此时,当时,,同理,,故函数为偶函数,又时,为增函数,(2)时,(2),即,,,综上所述,的取值范围是.【点睛】关键点点睛:(1)函数的零点即相应方程的根;(2)处理抽象不等式要充分利用函数的单调性与奇偶性去掉绝对值,转化为具体的不等式.21、(Ⅰ)x﹣y﹣1=0;(Ⅱ)(x+2)2+(y﹣3)2=4【解析】(Ⅰ)由两点式,可得直线l的方程;(Ⅱ)利用圆C的圆心在直线l上,且与y轴相切于点,确定圆心坐标与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 印刷行业广告牌安装施工合同
- 现代化商务区二手房合同模板
- 食品厂施工合同填写样本
- 健身企业用房买卖合同模板
- 国际旅行社外籍导游招聘合同
- 涂料施工技术支持合同
- 学校维修工招聘合同范本
- 涂料施工法律援助合同
- 停车场车位代理销售合同范本
- 污水处理厂管网扩建施工协议
- 1866人类与社会 小教本 国家开放大学机考 题库及答案
- 【课件】资源枯竭型城市的转型发展+课件2022-2023学年高二地理人教版(2019)选择性必修2
- 《论文技术哲学》课件
- 肿瘤诊断学及肿瘤检验标志物
- 剑桥商务英语BEC(初级)全套课件
- 边坡复绿工程施工方案
- 玄武岩类课件
- 《统计学(第二版)》全套教学课件
- 小学英语外研新标准四年级上册Module教学反思
- 内科学教学课件:脑梗死
- 阿特拉斯空压机机工作原理教材
评论
0/150
提交评论