2024届山东省沂源县第二中学高一上数学期末综合测试模拟试题含解析_第1页
2024届山东省沂源县第二中学高一上数学期末综合测试模拟试题含解析_第2页
2024届山东省沂源县第二中学高一上数学期末综合测试模拟试题含解析_第3页
2024届山东省沂源县第二中学高一上数学期末综合测试模拟试题含解析_第4页
2024届山东省沂源县第二中学高一上数学期末综合测试模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省沂源县第二中学高一上数学期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x3 B.y=|x|+1C.y=-x2+1 D.2.已知函数若曲线与直线的交点中,相邻交点的距离的最小值为,则的最小正周期为A. B.C. D.3.过圆C:(x﹣2)2+(y﹣2)2=4的圆心,作直线分别交x,y正半轴于点A,B,△AOB被圆分成四部分(如图),若这四部分图形面积满足SI+SⅣ=SⅡ+SⅢ,则这样的直线AB有A.0条 B.1条C.2条 D.3条4.“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知,则()A. B.C. D.6.“ω=2”是“π为函数的最小正周期”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.已知集合,,则A. B.C. D.8.已知,则下列结论正确的是()A. B.C. D.9.已知,且满足,则值A. B.C. D.10.函数的定义域是()A. B.C. D.(0,4)二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知满足任意都有成立,那么的取值范围是___________.12.在△ABC中,点满足,过点的直线与,所在直线分别交于点,,若,,,则的最小值为___________.13.当时,函数的最大值为________.14.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点,过点;当时,图象是线段BC,其中.根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为____________.(写成区间形式)15.已知一个扇形的弧所对的圆心角为54°,半径r=20cm,则该扇形的弧长为_____cm三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数,且求函数的定义域;求满足的实数x的取值范围17.若关于x的不等式的解集为(1)当时,求的值;(2)若,求的值及的最小值18.设函数(1)求函数的最小正周期和单调递增区间;(2)求函数在上的最大值与最小值及相应的x的值.19.已知(1)求函数的单调递增区间;(2)当时,函数的值域为,求实数的范围20.已知函数.(1)求、、的值;(2)若,求a的值.21.已知函数且若,求的值;若,求证:是偶函数

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】根据基本初等函数的单调性奇偶性,逐一分析答案四个函数在(0,+∞)上的单调性和奇偶性,逐一比照后可得答案【详解】选项A,函数y=x3不是偶函数;故A不满足.选项B,对于函数y=|x|+1,f(-x)=|-x|+1=|x|+1=f(x),所以y=|x|+1是偶函数,当x>0时,y=x+1,所以在(0,+∞)上单调递增;故B满足.选项C,y=-x2+1在(0,+∞)上单调递减;故C不满足选项D,不是偶函数.故D不满足故选:B.【点睛】本题主要考查了函数的奇偶性和单调性的判断,属于基础题.2、D【解析】将函数化简,根据曲线y=f(x)与直线y=1的交点中,相邻交点的距离的最小值为,即ωx2kπ或ωx2kπ,k∈Z,建立关系,可得ω的值,即得f(x)的最小正周期【详解】解:函数f(x)=cosωx+sinωx,ω>0,x∈R化简可得:f(x)sin(ωx)∵曲线y=f(x)与直线y=1的相交,即ωx2kπ或ωx2kπ,k∈Z,∴()+2kπ=ω(x2﹣x1),令k=0,∴x2﹣x1,解得:ω∴y=f(x)的最小正周期T,故选D【点睛】本题考查了和差公式、三角函数的图象与性质、三角函数的方程的解法,考查了推理能力与计算能力,属于中档题3、B【解析】数形结合分析出为定值,因此为定值,从而确定直线AB只有一条.【详解】已知圆与轴,轴均相切,由已知条件得,第部分的面积是定值,所以为定值,即为定值,当直线绕着圆心C移动时,只有一个位置符合题意,即直线AB只有一条.故选:B【点睛】本题考查直线与圆的实际应用,属于中档题.4、B【解析】先根据“关于x的不等式x2-2ax+a>0对x∈R恒成立”得0<a<1【详解】设p:“关于x的不等式x2-2ax+a>0对x∈R恒成立则由p知一元二次函数y=x2-2ax+a的图象开口向上,且所以对于一元二次方程x2-2ax+a=0必有解得0<a<1,由于0,1⊊所以“0≤a≤1”是“关于x的不等式x2-2ax+a>0对x∈R恒成立”故选:B.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p是q的必要不充分条件,则q对应集合是p对应集合的真子集;(2)若p是q充分不必要条件,则p对应集合是q对应集合的真子集;(3)若p是q的充分必要条件,则p对应集合与q对应集合相等;(4)若p是q的既不充分又不必要条件,q对的集合与p对应集合互不包含5、C【解析】因为,所以;因为,,所以,所以.选C6、A【解析】直接利用正弦型函数的性质的应用,充分条件和必要条件的应用判断A、B、C、D的结论【详解】解:当“ω=2”时,“函数f(x)=sin(2x﹣)的最小正周期为π”当函数f(x)=sin(ωx﹣)的最小正周期为π”,故ω=±2,故“ω=2”是“π为函数的最小正周期”的充分不必要条件;故选:A7、C【解析】利用一元二次不等式的解法化简集合,再根据集合的基本运算进行求解即可【详解】因为,,所以,故选C【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系.8、B【解析】先求出,再对四个选项一一验证即可.【详解】因为,又,解得:.故A错误;对于B:,故B正确;对于C:,故C错误;对于D:,故D错误.故选:B9、C【解析】由可求得,然后将经三角变换后用表示,于是可得所求【详解】∵,∴,解得或∵,∴∴故选C【点睛】对于给值求值的问题,解答时注意将条件和所求值的式子进行适当的化简,然后合理地运用条件达到求解的目的,解题的关键进行三角恒等变换,考查变换转化能力和运算能力10、C【解析】根据对数函数的单调性,结合二次根式的性质进行求解即可.【详解】由,故选:C二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由题意可知,分段函数在上单调递减,因此分段函数的每一段都是单调递减,且左边一段的最小值不小于右边的最大值,即可得到实数的取值范围.【详解】由任意都有成立,可知函数在上单调递减,又因,所以,解得.故答案为:.12、3【解析】先利用条件找到,然后对减元,化为,利用基本不等式求最小值.【详解】,,,三点共线,.则当且仅当,即时等号成立.故答案为:3.【点睛】(1)在向量运算中:①构造向量加、减法的三角形法则和平行四边形法则;②树立“基底”意识,利用基向量进行线性运算;(2)基本不等式求最值要注意应用条件:“一正二定三相等”.13、【解析】分子分母同除以,再利用基本不等式求解即可.【详解】,,当且仅当时取等号,即函数的最大值为,故答案为:.14、【解析】当,时,设,把点代入能求出解析式;当,时,设,把点、代入能求出解析式,结合题设条件,列出不等式组,即可求解.详解】当x∈(0,12]时,设,过点(12,78)代入得,a则f(x),当x∈(12,40]时,设y=kx+b,过点B(12,78)、C(40,50)得,即,由题意得,或得4<x≤12或12<x<28,所以4<x<28,则老师就在x∈(4,28)时段内安排核心内容,能使得学生学习效果最佳,故答案为:(4,28)【点睛】本题考查解析式的求法,考查不等式组的解法,解题时要认真审题,注意待定系数法的合理运用,属于中档题15、【解析】利用扇形的弧长公式求弧长即可.【详解】由弧长公式知:该扇形的弧长为(cm).故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)见解析.【解析】由题意可得,,解不等式可求;由已知可得,结合a的范围,进行分类讨论求解x的范围【详解】(1)由题意可得,,解可得,,函数的定义域为,由,可得,时,,解可得,,时,,解可得,【点睛】本题主要考查了对数函数的定义域及利用对数函数单调性求解对数不等式,体现了分类讨论思想的应用,属于基础试题17、(1);(2);.【解析】(1)根据一元二次不等式解集的性质,结合一元二次方程根与系数的关系、根的判别式进行求解即可;(2)根据一元二次不等式解集的性质,结合一元二次方程根与系数的关系、基本不等式进行求解即可.【小问1详解】由题可知关于x的方程有两个根,所以故【小问2详解】由题意关于x的方程有两个正根,所以有解得;同时,由得,所以,由于,所以,当且仅当,即,且,解得时取得“=”,此时实数符合条件,故,且当时,取得最小值18、(1)最小正周期,单调递增区间为,;(2)时函数取得最小值,时函数取得最大值;【解析】(1)利用二倍角公式及辅助角公式将函数化简,再根据正弦函数的性质计算可得;(2)由的取值范围,求出的取值范围,再根据正弦函数的性质计算可得;【小问1详解】解:因为,即,所以函数的最小正周期,令,,解得,,所以函数的单调递增区间为,;【小问2详解】解:因为,所以,所以当,即时函数取得最小值,即,当,即时函数取得最大值,即;19、(1),(2)【解析】(1)根据正弦函数的性质计算可得;(2)首先求出函数取最大值时的取值集合,即可得到,再根据函数在上是减函数,且,则的最大值为内使函数值为的值,即可求出的取值范围;【小问1详解】解:对于函数,令,,求得,故函数的单调递增区间为,【小问2详解】解:令,,解得,.即时取得最大值因为当时,取到最大值,所以又函数在上是减函数,且,故的最大值为内使函数值为的值,令,即,因为,所以,所以,解得,所以的取值范围是20、(1),,;(2)5.【解析】(1)根据自变量的范围选择相应的解析式可求得结果;(2)按照三种情况,,,选择相应的解析式代入解方程可得结果.【详解】(1),,,则;(2)当时,,解得(舍),当时,,则(舍),当时,,则,所以a的值为5.【点睛】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论