版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省三台县塔山中学高一数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下图记录了某景区某年月至月客流量情况:根据该折线图,下列说法正确的是()A.景区客流量逐月增加B.客流量的中位数为月份对应的游客人数C.月至月的客流量情况相对于月至月波动性更小,变化比较平稳D.月至月的客流量增长量与月至月的客流量回落量基本一致2.已知直二面角,点,,为垂足,,,为垂足.若,则到平面的距离等于A. B.C. D.13.已知向量,其中,则的最小值为()A.1 B.2C. D.34.已知角的终边经过点,则().A. B.C. D.5.设函数满足,的零点为,则下列选项中一定错误的是()A. B.C. D.6.设、、依次表示函数,,的零点,则、、的大小关系为()A. B.C. D.7.若函数的三个零点分别是,且,则()A. B.C. D.8.数列的前项的和为()A. B.C. D.9.若,则错误的是A. B.C. D.10.《九章算术》成书于公元一世纪,是中国古代乃至东方的第一部自成体系的数学专著.书中记载这样一个问题“今有宛田,下周三十步,径十六步.问为田几何?”(一步=1.5米)意思是现有扇形田,弧长为45米,直径为24米,那么扇形田的面积为A.135平方米 B.270平方米C.540平方米 D.1080平方米二、填空题:本大题共6小题,每小题5分,共30分。11.将函数的图象先向下平移1个单位长度,在作关于直线对称的图象,得到函数,则__________.12.已知是偶函数,则实数a的值为___________.13.已知向量,,,则=_____.14.函数的定义域是________.15.已知函数,若在区间上的最大值是,则_______;若在区间上单调递增,则的取值范围是___________16.已知集合,,则集合中元素的个数为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,(1)求函数的值域;(2)若对任意的,都有恒成立,求实数a的取值范围;(3)若对任意的,都存在四个不同的实数,,,,使得,其中,2,3,4,求实数a的取值范围18.已知函数fx(1)求实数a的值;(2)当a>0时,①判断fx②对任意实数x,不等式fsin2x+19.设函数,其中.(1)当时,求函数的零点;(2)若,求函数的最大值.20.已知关于一元二次不等式的解集为.(1)求函数的最小值;(2)求关于的一元二次不等式的解集.21.如图,在三棱锥P-ABC中,PA⊥AB,PA⊥AC,AB⊥BC,,D为线段AC的中点,E为线段PC上一点.(1)求证:平面BDE⊥平面PAC;(2)求二面角P-BC-A的平面角的大小.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据折线图,由中位数求法、极差的意义,结合各选项的描述判断正误即可.【详解】A:景区客流量有增有减,故错误;B:由图知:按各月份客流量排序为且是10个月份的客流量,因此数据的中位数为月份和月份对应客流量的平均数,故错误;C:由月至月的客流量相对于月至月的客流量:极差较小且各月份数据相对比较集中,故波动性更小,正确;D:由折线图知:月至月的客流量增长量与月至月的客流量回落量相比明显不同,故错误.故选:C2、C【解析】如图,在平面内过点作于点因为为直二面角,,所以,从而可得.又因为,所以面,故的长度就是点到平面的距离在中,因为,所以因为,所以.则在中,因为,所以.因为,所以,故选C3、A【解析】利用向量坐标求模得方法,用表示,然后利用三角函数分析最小值【详解】因为,所以,因为,所以,故的最小值为.故选A【点睛】本题将三角函数与向量综合考察,利用三角函数得有界性,求模长得最值4、A【解析】根据三角函数的概念,,可得结果.【详解】因为角终边经过点所以故选:A【点睛】本题主要考查角终边过一点正切值的计算,属基础题.5、C【解析】根据函数的解析式,结合零点的存在定理,进行分类讨论判定,即可求解.【详解】由题意,函数的定义域为,且的零点为,即,解得,又因为,可得中,有1个负数、两个正数,或3个都负数,若中,有1个负数、两个正数,可得,即,根据零点的存在定理,可得或;若中,3个都是负数,则满足,即,此时函数的零点.故选:C.6、D【解析】根据题意可知,的图象与的图象的交点的横坐标依次为,作图可求解.【详解】依题意可得,的图象与的图象交点的横坐标为,作出图象如图:由图象可知,,故选:D【点睛】本题主要考查了幂函数、指数函数、对数函数的图象,函数零点,数形结合的思想,属于中档题.7、D【解析】利用函数的零点列出方程,再结合,得出关于的不等式,解之可得选项【详解】因为函数的三个零点分别是,且,所以,,解得,所以函数,所以,又,所以,故选:D【点睛】关键点睛:本题考查函数的零点与方程的根的关系,关键在于准确地运用零点存在定理8、C【解析】根据分组求和可得结果.【详解】,故选:C9、D【解析】对于,由,则,故正确;对于,,故正确;对于,,故正确;对于,,故错误故选D10、B【解析】直接利用扇形面积计算得到答案.【详解】根据扇形的面积公式,计算扇形田的面积为Slr45270(平方米).故选:B.【点睛】本题考查了扇形面积,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、5【解析】利用平移变换和反函数的定义得到的解析式,进而得解.【详解】函数的图象先向下平移1个单位长度得到作关于直线对称的图象,即的反函数,则,,即,故答案为:5【点睛】关键点点睛:本题考查图像的平移变换和反函数的应用,利用反函数的性质求出的解析式是解题的关键,属于基础题.12、【解析】根据偶函数定义求解【详解】由题意恒成立,即,恒成立,所以故答案为:13、【解析】先根据向量的减法运算求得,再根据向量垂直的坐标表示,可得关于的方程,解方程即可求得的值.【详解】因为向量,,所以则即解得故答案为:【点睛】本题考查了向量垂直的坐标关系,属于基础题.14、【解析】利用已知条件可得出关于的不等式组,由此可解得函数的定义域.【详解】对于函数,有,解得.因此,函数的定义域为.故答案:.15、①.②.【解析】根据定义域得,再得到取最大值的条件求解即可;先得到一般性的单调增区间,再根据集合之间的关系求解.【详解】因为,且在此区间上的最大值是,所以因为f(x)max=2tan=,所以tan==,即ω=由,得令,得,即在区间上单调递增又因在区间上单调递增,所以<,即所以的取值范围是故答案为:1,16、2【解析】依题意,故,即元素个数为个.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】(1)利用基本函数的单调性即得;(2)由题可得恒成立,再利用基本不等式即求;(3)由题意可知对任意一个实数,方程有四个根,利用二次函数的图像及性质可得,即求.【小问1详解】∵函数,,所以函数在上单调递增,∴函数的值域为;【小问2详解】∵对任意的,都有恒成立,∴,即,即有,故有,∵,,∴,当且仅当,即取等号,∴,即,∴实数a的取值范围为;【小问3详解】∵函数的值域为,由题意可知对任意一个实数,方程有四个根,又,则必有,令,,故有,故有,可解得,∴实数a的取值范围为.18、(1)a=1或a=-1(2)①fx在R【解析】(1)依题意可得fx(2)①根据复合函数的单调性判断可得;②根据函数的单调性与奇偶性可得sin2x+cosx<2m-3在R上恒成立,由【小问1详解】解:因为函数fx所以fx+f(-x)=0,即可得1+x2+ax则(1-a2)x2【小问2详解】①因为a>0,所以a=1.函数fx=ln因为y=1+x2+x与y=ln②对任意实数x,f(sin2x+由①知函数fx在R可得sin2x+cos因为sin2所以2m-3>54于是正整数m的最小值为319、(1)1和(2)答案见解析【解析】(1)分段函数,在每一段上分别求解后检验(2)根据对称轴与区间关系,分类讨论求解【小问1详解】当时,当时,由得;当时,由得(舍去)当时,函数的零点为1和【小问2详解】①当时,,,由二次函数的单调性可知在上单调递减②当即时,,,由二次函数的单调性可知在上单调递增③当时,在上递增,在上的最大值为当时在递增,在上递减,在上的最大值为,当时当时在上递增,在上的最大值为,当时综上所述:当时,当时,当时,当时,20、(1)(2)【解析】(1)由题意可得,解不等式求出的取值范围,再利用基本不等式求的最小值;(2)不等式化为,比较和的大小,即可得出不等式的解集.【小问1详解】因为关于一元二次不等式的解集为,所以,化简可得:,解得:,所以,所以,当且仅当即,的最小值为.【小问2详解】不等式,可化为,因为,所以,所以该不等式的解集为.21、(1)见解析(2)【解析】(1)由线面垂直的判定定理可得平面,从而可得,证明,再根据线面垂直的判定定理可得平面PAC,再根据面面垂直的判定定理即可得证;(2)由线面垂直的性质可得,再根据线面垂直的判定定理可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商业演出聘用舞蹈演员合同
- 高速公路PE排水管道协议
- 停车场充电桩建设与运营合同
- 农业设施工程框架合同范本
- 铝单板展览馆装饰施工合同
- 建筑工程公司员工招聘合同
- 租赁吊篮合同书模板
- 大型商务中心广告屏租赁合同
- 体育场馆钢筋工施工合同范文
- 延期劳动合同协议三篇
- 企业开放日活动方案
- 五力分析微軟office
- 山东省济南市2022-2023学年高二上学期期末数学试题(学生版+解析)
- 2024年全国养老护理职业技能大赛选拔赛参考试题库(含答案)
- 铸牢中华民族共同体意识建设中华民族共同体
- 医学检验、医学影像检查结果互认制度测试题
- 大学生考风考纪主题班会课件
- 贵州省黔南州2023-2024学年九年级上学期期末考试英语试题(含答案)
- 光伏防火培训课件
- 新药品推广策划方案
- 《手术室管理规范》课件
评论
0/150
提交评论