版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省武城县第一中学高一数学第一学期期末复习检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数在内是减函数,则的取值范围是A. B.C. D.2.已知条件,条件,则p是q的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件3.直线l过点,且与以为端点的线段相交,则直线l的斜率的取值范围是()A. B.C. D.4.已知函数幂函数,且在其定义域内为单调函数,则实数()A. B.C.或 D.5.下列函数中,既是奇函数又在区间上是增函数的是()A. B.C. D.6.为了得到函数的图象,可以将函数的图象()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度7.若,,,则a,b,c的大小关系为()A. B.C. D.8.平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为A.π B.πC.4π D.π9.当时,,则a的取值范围是A.(0,) B.(,1)C.(1,) D.(,2)10.已知圆C:x2+y2+2x=0与过点A(1,0)的直线l有公共点,则直线l斜率k的取值范围是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知点是角终边上任一点,则__________12.已知,,则___________(用a、b表示).13.已知,则用表示______________;14.化简求值(1)化简(2)已知:,求值15.若函数满足,则______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数是偶函数.(1)求实数的值;(2)若函数,函数只有一个零点,求实数的取值范围.17.如图,在三棱锥中,平面平面为等边三角形,且分别为的中点(1)求证:平面;(2)求证:平面平面;18.已知函数.(Ⅰ)求的单调区间;(Ⅱ)求函数的对称轴和对称中心.19.如图,等腰梯形ABCD中,,角,,,F在线段BC上运动,过F且垂直于线段BC的直线l将梯形ABCD分为左、右两个部分,设左边部分含点B的部分面积为y分别求当与时y的值;设,试写出y关于x的函数解析20.如图,在扇形OAB中,半径OA=1,圆心角C是扇形弧上的动点,矩形CDEF内接于扇形,且OE=OF.记∠AOC=θ,求当角θ为何值时,矩形CDEF的面积S最大?并求出这个最大的面积.21.已知函数(1)求函数的对称中心;(2)当时,求函数的值域
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】由题设有为减函数,且,恒成立,所以,解得,选B.2、B【解析】利用充分条件和必要条件的定义进行判断【详解】由,得,即,由,得,即推不出,但能推出,∴p是q的必要不充分条件.故选:B3、D【解析】作出图形,并将直线l绕着点M进行旋转,使其与线段PQ相交,进而得到l斜率的取值范围.【详解】∵直线l过点,且与以,为端点的线段相交,如图所示:∴所求直线l的斜率k满足或,,则或,∴,故选:D4、A【解析】由幂函数的定义可得出关于的等式,求出的值,然后再将的值代入函数解析式进行检验,可得结果.【详解】因为函数为幂函数,则,即,解得或.若,函数解析式为,该函数在定义域上不单调,舍去;若,函数解析式,该函数在定义域上为增函数,合乎题意.综上所述,.故选:A.5、B【解析】先由函数定义域,排除A;再由函数奇偶性排除D,最后根据函数单调性,即可得出B正确,C错误.【详解】A选项,的定义域为,故A不满足题意;D选项,余弦函数偶函数,故D不满足题意;B选项,正切函数是奇函数,且在上单调递增,故在区间是增函数,即B正确;C选项,正弦函数是奇函数,且在上单调递增,所以在区间是增函数;因此是奇函数,且在上单调递减,故C不满足题意.故选:B.【点睛】本题主要考查三角函数性质的应用,熟记三角函数的奇偶性与单调性即可,属于基础题型.6、D【解析】,据此可知,为了得到函数的图象,可以将函数的图象向右平移个单位长度.本题选择D选项.7、A【解析】根据指数函数和对数函数的单调性进行判断即可.【详解】∵,∴,∴,,,∴.故选:A8、B【解析】球半径,所以球的体积为,选B.9、B【解析】分和两种情况讨论,即可得出结果.【详解】当时,显然不成立.若时当时,,此时对数,解得,根据对数的图象和性质可知,要使在时恒成立,则有,如图选B.【点睛】本题主要考查对数函数与指数函数的应用,熟记对数函数与指数函数的性质即可,属于常考题型.10、B【解析】利用点到直线的距离公式和直线和圆的位置关系直接求解【详解】根据题意得,圆心(﹣1,0),r=1,设直线方程为y﹣0=k(x﹣1),即kx﹣y﹣k=0∴圆心到直线的距离d1,解得k故选B【点睛】本题考查直线和圆的位置关系,点到直线的距离公式,属于基础题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、##【解析】将所求式子,利用二倍角公式和平方关系化为,然后由商数关系弦化切,结合三角函数的定义即可求解.【详解】解:因为点是角终边上任一点,所以,所以,故答案为:.12、##【解析】根据对数的运算性质可得,再由指对数关系有,,即可得答案.【详解】由,又,,∴,,故.故答案为:.13、【解析】根据对数的运算性质,对已知条件和目标问题进行化简,即可求解.【详解】因为,故可得,解得..故答案:.【点睛】本题考查对数的运算性质,属基础题.14、(1)(2)【解析】(1)利用诱导公式化简即可;(2)先进行弦化切,把代入即可求解.【小问1详解】.【小问2详解】因为,所以.所以.又,所以.15、【解析】根据题意,令,结合指数幂的运算,即可求解.【详解】由题意,函数满足,令,可得.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2).【解析】(1)利用函数为偶函数推出的值,即可求解;(2)根据函数与方程之间的关系,转化为方程只有一个根,利用换元法进行转化求解即可.【详解】(1)由题意,函数为偶函数,所以,即,所以,即,则对恒成立,解得.(2)由只有一个零点,所以方程有且只有一个实根,即方程有且只有一个实根,即方程有且只有一个实根,令,则方程有且只有一个正根,①当时,,不合题意;②当时,因为0不是方程的根,所以方程的两根异号或有两相等正根,由,解得或,当,则不合题意,舍去;当,则,符合题意,若方程有两根异号,则,所以,综上,的取值范围是.17、(1)证明见解析;(2)证明见解析.【解析】(1)因为分别为的中点,所以,由线面平行的判定定理,即可得到平面;(2)因为为的中点,得到,利用面面垂直的性质定理可证得平面,由面面垂直的判定定理,即可得到平面平面【详解】(1)因为、分别为、的中点,所以.又因为平面,所以平面;(2)因为,为的中点,所以,又因为平面平面,平面平面,且平面,所以平面,平面,平面平面.【点睛】本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直18、(1)单调递增区间为,单调递减区间为:;(2)对称中心为:,对称轴方程为:.【解析】详解】试题分析:(1)将看作一个整体,根据余弦函数的单调区间求解即可.(2)将看作一个整体,根据余弦函数的对称中心和对称轴建立方程可求得函数的对称轴和对称中心试题解析:(1)由,得,∴函数的单调递增区间为;由,得,∴函数的单调递减区间为(2)令,得,∴函数图象的对称轴方程为:.令,得,∴函数图象的对称中心为.19、(1)当时,,当时,;(2).【解析】过A作,M为垂足,过D作,N为垂足,则,由此能求出y的值;设,当时,,当时,;当时,由此能求出y关于x的函数解析【详解】如图,过A作,M为垂足,过D作,N为垂足,则,当时,,当时,设,当时,,当时,;当时,.【点睛】本题考查函数值、函数解析式的求法,考查函数性质、三角形及矩形形面积公式等基础知识,考查运算求解能力,考查数形结合思想,是中档题.20、当时,矩形的面积最大为【解析】由点向作垂线,垂足为,利用平面几何知识得到为等边三角形,然后利用表示出和,从而得到矩形的面积,利用三角函数求最值进行分析求解,即可得到答案【详解】解:由点向作垂线,垂足为,在中,,,由题意可知
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商业演出聘用舞蹈演员合同
- 高速公路PE排水管道协议
- 停车场充电桩建设与运营合同
- 农业设施工程框架合同范本
- 铝单板展览馆装饰施工合同
- 建筑工程公司员工招聘合同
- 租赁吊篮合同书模板
- 大型商务中心广告屏租赁合同
- 体育场馆钢筋工施工合同范文
- 延期劳动合同协议三篇
- 《报批报建工作》课件
- 2024年商业流通仓储服务项目立项申请报告模板
- 公司业绩汇报及规划
- 统编版(2024版)七年级上册历史期末复习课件
- 国家开放大学专科《机械制图》一平台机考真题及答案(第一套)
- 2024青海海东市水务集团限责任公司招聘27人易考易错模拟试题(共500题)试卷后附参考答案
- 幼儿园大班音乐《献上最美的哈达》课件
- 2024年世界职业院校技能大赛高职组“智慧金融组”赛项参考试题库(含答案)
- 2024房地产中介经纪人劳动合同
- 光伏发电系统设计
- 小学二年级数学上册-加减乘除法口算题800道
评论
0/150
提交评论