版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届文海-黄冈八模数学高一上期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.下列各组中的两个函数表示同一函数的是()A. B.y=lnx2,y=2lnxC D.2.已知,则下列结论中正确的是()A.的最大值为 B.在区间上单调递增C.的图象关于点对称 D.的最小正周期为3.30°的弧度数为()A. B.C. D.4.设向量不共线,向量与共线,则实数()A. B.C.1 D.25.定义运算,若函数,则的值域是()A. B.C. D.6.已知集合则()A. B.C. D.7.已知是第二象限角,,则()A. B.C. D.8.已知圆和圆,则两圆的位置关系为A.内含 B.内切C.相交 D.外切9.将函数的图象向右平移个单位长度,所得图象对应的函数()A.在区间上单调递减 B.在区间上单调递增C.在区间上单调递减 D.在区间上单调递增10.已知扇形的周长是6,圆心角为,则扇形的面积是()A.1 B.2C.3 D.4二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.如图1是我国古代著名的“赵爽弦图”的示意图,它由四个全等的直角三角形围成,其中,现将每个直角三角形的较长的直角边分别向外延长一倍,得到如图2的数学风车,则图2“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为_______________12.正三棱锥P﹣ABC的底面边长为1,E,F,G,H分别是PA,AC,BC,PB的中点,四边形EFGH的面积为S,则S的取值范围是__13.点分别为圆与圆上的动点,点在直线上运动,则的最小值为__________14.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________.15.已知,则_______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数(1)证明:函数在区间上单调递增;(2)已知,试比较三个数a,b,c的大小,并说明理由17.已知函数的部分图象如图所示,点为函数的图象与y轴的一个交点,点B为函数图象上的一个最高点,且点B的横坐标为,点为函数的图象与x轴的一个交点(1)求函数的解析式;(2)已知函数的值域为,求a,b的值18.已知函数,.(1)求的值.(2)设,,,求的值.19.已知(1)化简(2)若是第三象限角,且,求的值20.已知函数(1)当时,函数恒有意义,求实数的取值范围;(2)是否存在这样的实数,使得函数在区间上为减函数,并且最大值为1?如果存在,试求出的值;如果不存在,请说明理由21.已知集合,.(1)求,;(2)若,且,求实数的取值范围.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】逐项判断函数的定义域与对应法则是否相同,即可得出结果.【详解】对于A,
定义域为,而定义域为,定义域相同,但对应法则不同,故不是同一函数,排除A;对于B,定义域,而定义域为,所以定义域不同,不是同一函数,排除B;对于C,
定义域为,而定义域为,所以定义域不同,不是同一函数,排除C;对于D,与的定义域均为,且,对应法则一致,所以是同一函数,D正确.故选:D2、B【解析】利用辅助角公式可得,根据正弦型函数最值、单调性、对称性和最小正周期的求法依次判断各个选项即可.【详解】;对于A,,A错误;对于B,当时,,由正弦函数在上单调递增可知:在上单调递增,B正确;对于C,当时,,则关于成轴对称,C错误;对于D,最小正周期,D错误.故选:B.3、B【解析】根据弧度与角度之间的转化关系进行转化即可.详解】解:,故选.【点睛】本题考查了将角度制化为弧度制,属于基础题.4、A【解析】由向量共线定理求解【详解】因为向量与共线,所以存在实数,使得,又向量不共线,所以,解得故选:A5、C【解析】由定义可得,结合指数函数性质即可求出.【详解】由定义可得,当时,,则,当时,,则,综上,的值域是.故选:C.6、D【解析】首先解一元二次不等式求得集合A,之后利用交集中元素的特征求得,得到结果.【详解】由解得,所以,又因为,所以,故选:D.【点睛】本题考查的是有关集合的问题,涉及到的知识点有利用一元二次不等式的解法求集合,集合的交运算,属于基础题目.7、B【解析】利用同角三角函数基本关系式求解.【详解】因为是第二象限角,,且,所以.故选:B.8、B【解析】由于圆,即
表示以为圆心,半径等于1的圆圆,即,表示以为圆心,半径等于3的圆由于两圆的圆心距等于等于半径之差,故两个圆内切故选B9、D【解析】由条件根据函数的图象变换规律得到变换之后的函数解析式,再根据正弦函数的单调性判断即可【详解】解:将函数的图象向右平移个单位长度,得到,若,则,因为在上不单调,故在上不单调,故A、B错误;若,则,因为在上单调递增,故在上单调递增,故C错误,D正确;故选:D10、B【解析】设扇形的半径为r,弧长为l,先由周长求出半径和弧长,即可求出扇形的面积.【详解】设扇形的半径为r,弧长为l,因为圆心角为,所以.因为扇形的周长是6,所以,解得:.所以扇形的面积是.故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、24:25【解析】设三角形三边的边长分别为,分别求出阴影部分面积和大正方形面积即可求解.【详解】解:由题意,“赵爽弦图”由四个全等的直角三角形围成,其中,设三角形三边的边长分别为,则大正方形的边长为5,所以大正方形的面积,如图,将延长到,则,所以,又到的距离即为到的距离,所以三角形的面积等于三角形的面积,即,所以“赵爽弦图”外面(图中阴影部分)的面积,所以“赵爽弦图”外面(图中阴影部分)的面积与大正方形面积之比为.故答案为:24:25.12、(,+∞)【解析】由正三棱锥可得四边形EFGH为矩形,并可得其边长与三棱锥棱长关系,从而可得面积S的范围.【详解】∵棱锥P﹣ABC为底面边长为1的正三棱锥∴AB⊥PC又∵E,F,G,H,分别是PA,AC,BC,PD的中点,∴EH//FG//AB且EH=FGAB,EF//HG//PC且EF=HGPC则四边形EFGH为一个矩形又∵PC,∴EF,∴S=EFEH,∴四边形EFGH的面积S的取值范围是(,+∞),故答案为:(,+∞)三、13、7【解析】根据题意,算出圆M关于直线对称的圆方程为.当点P位于线段上时,线段AB的长就是的最小值,由此结合对称的知识与两点间的距离公式加以计算,即可得出的最小值.【详解】设圆是圆关于直线对称的圆,
可得,圆方程为,
可得当点C位于线段上时,线段AB长是圆N与圆上两个动点之间的距离最小值,
此时的最小值为AB,
,圆的半径,
,
可得因此的最小值为7,
故答案为7.点睛:圆中的最值问题往往转化动点与圆心的距离问题,本题中可以转化为,再利用对称性求出的最小值即可14、(答案不止一个)【解析】根据偶函数和零点的定义进行求解即可.详解】函数符合题目要求,理由如下:该函数显然满足①;当时,,所以有,当时,,所以有,因此该函数是偶函数,所以满足②当时,,或,当时,,或舍去,所以该函数有3个零点,满足③,故答案为:15、【解析】将条件平方可得答案.【详解】因为,所以,所以故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)证明见解析(2)【解析】(1)根据函数单调性的定义即可证明;(2)先比较三个数的大小,再利用函数的单调性即可比较a,b,c的大小.【小问1详解】证明:函数,任取,且,则,因为,且,所以,,所以,即,所以函数在区间上单调递增;【小问2详解】解:由(1)可知函数在区间上单调递增,因为,,,所以,所以,即.17、(1)(2)或【解析】(1)根据图象可得函数的周期,利用求出,根据五点画图法求出,根据点A坐标求出A,进而得出解析式;(2)根据三角函数的性质求出的值域,由(1)知,对的取值分类讨论,列出方程组,解之即可.【小问1详解】由函数的部分图象可知,函数的周期,可得,由五点画图法可知,可得,有,又由,可得,故有函数的解析式为;【小问2详解】由(1)知,函数的值域为.①当时,解得;②当时,解得由上知或18、(1);(2).【解析】(1)代入可求得其值;(2)由已知求得,,再由同角三角函数的关系可求得,,运用余弦的和角公式可求得答案.【详解】解:(1).(2),∴,∵,∴,∵,∴,,∵.19、(1);(2).【解析】分析:(1)根据诱导公式化简即得,(2)先根据诱导公式得,再根据平方关系求,即得的值.详解:(1).(2)由,得:∵是第三象限角,∴则点睛:本题考查诱导公式以及同角三角函数关系,考查基本求解能力.20、(1);(2)不存在,理由见解析【解析】(1)结合题意得到关于实数的不等式组,求解不等式,即可求解,得到答案;(2)由题意结合对数函数的图象与性质,即可求得是否存在满足题意的实数的值,得到答案【详解】(1)由题设,对一切恒成立,且,∵,∴在上减函数,从而,∴,∴的取值范围为;(2)假设存在这样的实数,由题设知,即,∴,此时,当时,,此时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北师大版四年级上册数学第三单元 乘法 测试卷及参考答案【预热题】
- 认识图形教学反思
- 社区办公用房自查报告(3篇)
- 简易2024年离婚协议:零财产争议解决方案3篇
- 订餐平台合同范本
- 设备采购招标文件全解读深入解读详解
- 语文学习方法详解
- 课后英语学习方法
- 货物采购合同清关
- 质量监控工程信誉守卫书
- 《消防安全常识培训》课件
- (统编版2024)语文七年级上册 第四单元 《阅读综合实践 》 课件(新教材)
- 2024粤东西粤北地区教师全员轮训培训心得总结
- 2024AI Agent行业研究报告
- 股东之间利益冲突的识别、审查和管理制度
- 2024年湖南财信金融控股集团有限公司招聘笔试参考题库含答案解析
- 挥发性有机物(VOCs)定义、种类及来源
- 职业生涯规划报告范文
- 结合我国经济发展的实际应如何解决收入分配问题?处理效率与公平之间的关系?
- 【小学】小学生综合素质发展评价手册
- 旅行社低价竞争问题的分析与思考
评论
0/150
提交评论