2024届四川省名校数学高一上期末学业质量监测模拟试题含解析_第1页
2024届四川省名校数学高一上期末学业质量监测模拟试题含解析_第2页
2024届四川省名校数学高一上期末学业质量监测模拟试题含解析_第3页
2024届四川省名校数学高一上期末学业质量监测模拟试题含解析_第4页
2024届四川省名校数学高一上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省名校数学高一上期末学业质量监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.方程的解所在区间是()A. B.C. D.2.设,表示两个不同平面,表示一条直线,下列命题正确的是()A.若,,则.B.若,,则.C.若,,则.D.若,,则.3.函数的最小值和最大值分别为()A. B.C. D.4.在中,,则的值为A. B.C. D.25.已知全集U=R,集合,,则集合()A. B.C. D.6.()A B.C. D.7.定义在实数集上的奇函数恒满足,且时,,则()A. B.C.1 D.8.已知函数,则下列关于函数的说法中,正确的是()A.将图象向左平移个单位可得到的图象B.将图象向右平移个单位,所得图象关于对称C.是函数的一条对称轴D.最小正周期为9.集合的真子集的个数是()A. B.C. D.10.方程组的解集是()A. B.C. D.11.是上的奇函数,满足,当时,,则()A. B.C. D.12.已知、、是的三个内角,若,则是A.钝角三角形 B.锐角三角形C.直角三角形 D.任意三角形二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知点,直线与线段相交,则实数的取值范围是____;14.__________.15.若正数x,y满足,则的最小值是_________16.已知,,则__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设是定义在上的偶函数,的图象与的图象关于直线对称,且当时,()求的解析式()若在上为增函数,求的取值范围()是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由18.已知,.(1)求的值;(2)求的值;(3)求的值.19.如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动(Ⅰ)求三棱锥E-PAD的体积;(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF20.已知函数,(1)求函数最小正周期以及函数在区间上的最大值和最小值;(2)将函数图象的横坐标伸长到原来的2倍,纵坐标不变,得到函数的图象,若,求实数的取值范围21.已知函数(1)证明:函数在区间上单调递增;(2)已知,试比较三个数a,b,c的大小,并说明理由22.如图,已知直线//,是直线、之间的一定点,并且点到直线、的距离分别为1、2,垂足分别为E、D,是直线上一动点,作,且使与直线交于点.试选择合适的变量分别表示三角形的直角边和面积S,并求解下列问题:(1)若为等腰三角形,求和的长;(2)求面积S最小值.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】判断所给选项中的区间的两个端点的函数值的积的正负性即可选出正确答案.【详解】∵,∴,,,,∴,∵函数的图象是连续的,∴函数的零点所在的区间是.故选C【点睛】本题考查了根据零存在原理判断方程的解所在的区间,考查了数学运算能力.2、C【解析】由或判断;由,或相交判断;根据线面平行与面面平行的定义判断;由或相交,判断.【详解】若,,则或,不正确;若,,则,或相交,不正确;若,,可得没有公共点,即,正确;若,,则或相交,不正确,故选C.【点睛】本题主要考查空间平行关系的性质与判断,属于基础题.空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.3、C【解析】2.∴当时,,当时,,故选C.4、C【解析】直接利用三角函数关系式的恒等变换和特殊角的三角函数的值求出结果【详解】在中,,则,,,,故选C【点睛】本题考查的知识要点:三角函数关系式的恒等变换和特殊角三角函数的值的应用,主要考查学生的运算能力和转化能力,属于基础题型5、D【解析】依次计算集合,最后得出结果即可.【详解】,,或,故.故选:D.6、A【解析】由根据诱导公式可得答案.【详解】故选:A7、B【解析】根据函数奇偶性和等量关系,求出函数是周期为4的周期函数,利用函数的周期性进行转化求解即可【详解】解:奇函数恒满足,,即,则,即,即是周期为4的周期函数,所以,故选:B8、C【解析】根据余弦型函数的图象变换性质,结合余弦型函数的对称性和周期性逐一判断即可.【详解】A:图象向左平移个单位可得到函数的解析式为:,故本选项说法不正确;B:图象向右平移个单位,所得函数的解析式为;,因为,所以该函数是偶函数,图象不关于原点对称,故本选项说法不正确;C:因为,所以是函数的一条对称轴,因此本选项说法正确;D:函数的最小正周期为:,所以本选项说法不正确,故选:C9、B【解析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合的元素个数为,故集合的真子集个数为.故选:B.10、A【解析】解出方程组,写成集合形式.【详解】由可得:或.所以方程组的解集是.故选:A11、D【解析】根据函数的周期性与奇偶性可得,结合当时,,得到结果.【详解】∵∴的周期为4,∴,又是上奇函数,当时,,∴,故选:D【点睛】本题考查函数的周期性与奇偶性,解题的关键是根据函数的性质将未知解析式的区间上函数的求值问题转化为已知解析式的区间上来求,本题考查了转化化归的能力及代数计算的能力.12、A【解析】依题意,可知B,C中有一角为钝角,从而可得答案详解】∵A是△ABC的一个内角,∴sinA>0,又sinAcosBtanC<0,∴cosBtanC<0,∴B,C中有一角为钝角,故△ABC为钝角三角形故选A【点睛】本题考查三角形的形状判断,求得B,C中有一角为钝角是判断的关键,属于中档题二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由直线,即,此时直线恒过点,则直线的斜率,直线的斜率,若直线与线段相交,则,即,所以实数的取值范围是点睛:本题考查了两条直线的位置关系的应用,其中解答中把直线与线段有交点转化为直线间的斜率之间的关系是解答的关键,同时要熟记直线方程的各种形式和直线过定点的判定,此类问题解答中把直线与线段有交点转化为定点与线段端点斜率之间关系是常见的一种解题方法,着重考查了学生分析问题和解答问题的能力14、1【解析】应用诱导公式化简求值即可.【详解】原式.故答案为:1.15、##【解析】由基本不等式结合得出最值.【详解】(当且仅当时,等号成立),即最小值为.故答案为:16、【解析】构造角,,再用两角和的余弦公式及二倍公式打开.【详解】,,,,,故答案为:【点睛】本题是给值求值题,关键是构造角,应注意的是确定三角函数值的符号.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2);(3)见解析.【解析】分析:()当时,,;当时,,从而可得结果;()由题设知,对恒成立,即对恒成立,于是,,从而;()因为为偶函数,故只需研究函数在的最大值,利用导数研究函数的单调性,讨论两种情况,即可筛选出符合题意的正整数.详解:()当时,,;当时,,∴,()由题设知,对恒成立,即对恒成立,于是,,从而()因为为偶函数,故只需研究函数在的最大值令,计算得出()若,即,,故此时不存在符合题意的()若,即,则在上为增函数,于是令,故综上,存在满足题设点睛:本题主要考查利用导数研究函数的单调性、函数奇偶性的应用及利用单调性求参数的范围,属于中档题.利用单调性求参数的范围的常见方法:①视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间上是单调的,则该函数在此区间的任意子集上也是单调的;②利用导数转化为不等式或恒成立问题求参数范围.18、(1);(2);(3).【解析】(1)利用二倍角的正切公式求解即可;(2)将分子分母同除得到,代值求解即可;(3)先求得,再用两角差的正弦公式求解即可.【详解】(1)(2)(3)19、(Ⅰ)(Ⅱ)平行,(Ⅲ)详见解析【解析】(1)三棱锥的体积==·=.(2)当点为的中点时,与平面平行∵在中,分别为、的中点,∴,又平面,平面,∴平面(3)证明:∵⊥平面,平面,∴,又,,平面,平面.又平面,∴.又,点是的中点,∴,又,平面,∴⊥平面.∵平面,∴.考点:本小题主要考查三棱锥体积的计算、线面平行、线面垂直等的证明,考查学生的空间想象能力和逻辑推理能力.点评:计算三棱锥体积时,注意可以根据需要让任何一个面作底面,还经常利用等体积法求三棱锥20、(1);最大值为,最小值;(2).【解析】(1)由题可得,再利用正弦函数的性质即求;(2)由题可得,利用正弦函数的性质可知在上单调递增,进而可得,即得.【小问1详解】∵,,∴,∴函数的最小正周期为,当时,,,∴,故函数在区间上的最大值为,最小值;【小问2详解】由题可得,由,可得,故在上单调递增,又,,由可得,,解得,∴实数的取值范围为.21、(1)证明见解析(2)【解析】(1)根据函数单调性的定义即可证明;(2)先比较三个数的大小,再利用函数的单调性即可比较a,b,c的大小.【小问1详解】证明:函数,任取,且,则,因为,且,所以,,所以,即,所以函数在区间上单调递增;【小问2详解】解:由(1)可知函数在区间上单调递增,因为,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论