版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省运城市永济涑北中学高一上数学期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.过点A(3,4)且与直线l:x﹣2y﹣1=0垂直的直线的方程是A.2x+y﹣10=0 B.x+2y﹣11=0C.x﹣2y+5=0 D.x﹣2y﹣5=02.若集合,集合,则()A.{5,8} B.{4,5,6,8}C.{3,5,7,8} D.{3,4,5,6,7,8}3.30°的弧度数为()A. B.C. D.4.定义在R上的偶函数f(x)满足,当x∈[0,1]时,则函数在区间上的所有零点的和为()A.10 B.9C.8 D.65.函数有()A.最大值 B.最小值C.最大值2 D.最小值26.已知,则的取值范围是()A. B.C. D.7.要得到函数的图象,只需的图象A.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)B.向左平移个单位,再把各点的纵坐标缩短到原来的倍(横坐标不变)C.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)D.向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变)8.函数的最大值与最小值分别为()A.3,-1 B.3,-2C.2,-1 D.2,-29.已知函数,且,则A. B.0C. D.310.若函数满足,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数在区间上的单调性是______.(填写“单调递增”或“单调递减”)12.函数的定义域为D,给出下列两个条件:①对于任意,当时,总有;②在定义域内不是单调函数.请写出一个同时满足条件①②的函数,则______________.13.若在上是减函数,则a的最大值是___________.14.已知,,则的最大值为______;若,,且,则______.15.一个正方体的顶点都在球面上,它的棱长为2cm,则球的表面积为_____________16.已知fx是定义域为R的奇函数,且当x>0时,fx=ln三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.2021年8月,国务院教育督导委员会办公室印发《关于组织责任督学进行“五项管理”督导的通知》,通知指出,加强中小学生作业、睡眠、手机、读物、体质管理(简称“五项管理”),是深入推进学生健康成长的重要举措.宿州市要对全市中小学生“体能达标”情况进行摸底,采用普查与抽样相结合的方式进行.现从某样本校中随机抽取20名学生参加体能测试,将这20名学生随机分为甲、乙两组,其中甲、乙两组学生人数之比为3:2,测试后,两组各自的成绩统计如下:甲组学生的平均成绩为75分,方差为16;乙组学生的平均成绩为80分,方差为25(1)估计该样本校学生体能测试的平均成绩;(2)求这20名学生测试成绩的标准差.(结果保留整数)18.已知定义在R上的函数(1)若,判断并证明的单调性;(2)解关于x的不等式.19.如图,某污水处理厂要在一个矩形污水处理池的池底水平铺设污水净化管道(,是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口是的中点,分别落在线段上.已知米,米,记.(1)试将污水净化管道总长度(即的周长)表示为的函数,并求出定义域;(2)问当取何值时,污水净化效果最好?并求出此时管道的总长度.(提示:.)20.已知方程(1)若方程表示一条直线,求实数的取值范围;(2)若方程表示的直线的斜率不存在,求实数的值,并求出此时的直线方程;(3)若方程表示的直线在轴上的截距为,求实数的值;(4)若方程表示的直线的倾斜角是45°,求实数的值21.为适应市场需求,某公司决定从甲、乙两种类型工业设备中选择一种进行投资生产,根据公司自身生产经营能力和市场调研,得出生产经营这两种工业设备的有关数据如下表:类别年固定成本每台产品原料费每台产品售价年最多可生产甲设备100万元m万元50万元200台乙设备200万元40万元90万元120台假定生产经营活动满足下列条件:①年固定成本与年生产的设备台数无关;②m为待定常数,其值由生产甲种设备的原料价格决定,且m∈[30,40];③生产甲种设备不需要支付环保、专利等其它费用,而生产x台乙种设备还需支付环保,专利等其它费用0.25x2万元;④生产出来的设备都能在当年全部销售出去(Ⅰ)若该公司选择投资生产甲设备,则至少需要年生产a台设备,才能保证对任意m∈[30,40],公司投资生产都不会赔本,求a的值;(Ⅱ)公司要获得最大年利润,应该从甲、乙两种工业设备中选择哪种设备投资生产?请你为该公司作出投资选择和生产安排
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】依题意,设所求直线的一般式方程为,把点坐标代入求解,从而求出一般式方程.【详解】设经过点且垂直于直线的直线的一般式方程为,把点坐标代入可得:,解得,所求直线方程为:.故选:A【点睛】本题考查了直线的方程、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于基础题.2、D【解析】根据并集的概念和运算即可得出结果.【详解】由,得.故选:D3、B【解析】根据弧度与角度之间的转化关系进行转化即可.详解】解:,故选.【点睛】本题考查了将角度制化为弧度制,属于基础题.4、A【解析】根据条件可得函数f(x)的图象关于直线x=1对称;根据函数的解析式及奇偶性,对称性可得出函数f(x)在的图象;令,画出其图象,进而得出函数的图象.根据函数图象及其对称性,中点坐标公式即可得出结论【详解】因为定义在R上的偶函数f(x)满足,所以函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,,可以得出函数f(x)在上的图象,进而得出函数f(x)在的图象.画出函数,的图象;令,可得周期T1,画出其图象,进而得出函数的图象由图象可得:函数在区间上共有10个零点,即5对零点,每对零点的中点都为1,所以所有零点的和为.故选:A5、D【解析】分离常数后,用基本不等式可解.【详解】(方法1),,则,当且仅当,即时,等号成立.(方法2)令,,,.将其代入,原函数可化为,当且仅当,即时等号成立,此时.故选:D6、B【解析】根据对数函数的性质即可确定的范围.【详解】由对数及不等式的性质知:,而,所以.故选:B7、D【解析】先将函数的解析式化为,再利用三角函数图象的变换规律得出正确选项.【详解】,因此,将函数的图象向左平移个单位,再把各点的纵坐标伸长到原来的倍(横坐标不变),可得到函数的图象,故选D.【点睛】本题考查三角函数的图象变换,处理这类问题的要注意以下两个问题:(1)左右平移指的是在自变量上变化了多少;(2)变换时两个函数的名称要保持一致.8、D【解析】分析:将化为,令,可得关于t的二次函数,根据t的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,设,则,根据二次函数性质当时,y取最大值2,当时,y取最小值.故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为的形式,用换元法求解;另一种是将解析式化为的形式,根据角的范围求解.9、D【解析】分别求和,联立方程组,进行求解,即可得到答案.【详解】由题意,函数,且,,则,两式相加得且,即,,则,故选D【点睛】本题主要考查了函数值的计算,结合函数奇偶性的性质建立方程组是解决本题的关键,着重考查了运算与求解能力,属于基础题.10、A【解析】,所以,选A.二、填空题:本大题共6小题,每小题5分,共30分。11、单调递增【解析】求出函数单调递增区间,再判断作答.【详解】函数的图象对称轴为,因此,函数的单调递增区间为,而,所以函数在区间上的单调性是单调递增.故答案为:单调递增12、【解析】根据题意写出一个同时满足①②的函数即可.【详解】解:易知:,上单调递减,上单调递减,故对于任意,当时,总有;且在其定义域上不单调.故答案为:.13、【解析】求出导函数,然后解不等式确定的范围后可得最大值【详解】由题意,,,,,,,∴,的最大值为故答案为:【点睛】本题考查用导数研究函数的单调性,考查两角和与差的正弦公式,考查正弦函数的性质,根据导数与单调性的关系列不等式求解即可.14、①.14②.10【解析】根据数量积的运算性质,计算的平方即可求出最大值,两边平方,可得,计算的平方即可求解.【详解】,当且仅当同向时等号成立,所以,即的最大值为14,由两边平方可得:,所以,所以,即.故答案为:14;10【点睛】本题主要考查了数量积的运算性质,数量积的定义,考查了运算能力,属于中档题.15、【解析】正方体的对角线等于球的直径.求得正方体的对角线,则球的表面积为考点:球的表面积点评:若长方体的长、宽和高分别为a、b、c,则球的直径等于长方体的对角线16、1【解析】首先根据x>0时fx的解析式求出f1【详解】因为当x>0时,fx=ln又因为fx是定义域为R的奇函数,所以f故答案为:1.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)77(2)【解析】(1)由已知可得甲、乙两组学生的人数分别为12、8,求得总分进而可得平均成绩.(2)方法一:由变形得,设甲组学生的测试成绩分别为,,,乙组学生的测试成绩分别为,,.根据方差公式计算可得,.计算求得20人的方差,进而得出标准差.方法二:直接使用权重公式计算即可得出结果.【小问1详解】由题知,甲、乙两组学生的人数分别为12、8,则这20名学生测试成绩的平均数,故可估计该样本校学生体能测试的平均成绩为77【小问2详解】方法一:由变形得,设甲组学生的测试成绩分别为,,,乙组学生的测试成绩分别为,,由甲组学生的测试成绩的方差,得由乙组学生的测试成绩的方差,得故这20名学生的测试成绩的方差所以(方法二)直接使用权重公式所以.18、(1)在定义域R内单调递增;证明见解析(2)答案见解析【解析】(1)根据题意,利用待定系数法求出的值,即可得函数的解析式,利用作差法分析可得结论;(2)根据题意,,即,求出的取值范围,按的取值范围分情况讨论,求出不等式的解集,即可得答案【小问1详解】若,则a=3,,在定义域R内单调递增;证明如下:任取,,且.则,根据单调递增的定义可知在定义域R内单调递增;【小问2详解】由,即,即,得,当a>1时,的解为;当0<a<1时,的解为.综上所述,当a>1时,原不等式的解为;当0<a<1时,原不等式的解为.19、(1),定义域为.(2)当或时所铺设的管道最短,为米.【解析】(1)如图,因为都是直角三角形,故可以得到,也就是,其中.(2)可变形为,令后,则有,其中,故取的最大值米.【详解】(1).由于,,所以,故.管道的总长度,定义域为.(2).设,则,由于,所以.因为在内单调递减,于是当时,取的最大值米.(此时或).答:当或时所铺设的管道最短,为米.【点睛】在三角变换中,注意之间有关系,如,,三者中知道其中一个,必定可以求出另外两个.20、(1);(2);;(3);(4).【解析】(1)先令,的系数同时为零时得到,即得时方程表示一条直线;(2)由(1)知时的系数为零,方程表示的直线的斜率不存在,即得结果;(3)由(1)知的系数同为零时,直线在轴上的截距存在,解得截距构建关系,即解得参数m;(4)由(1)知,的系数为零时,直线的斜率存在,解得斜率构建关系式,解得参数m.【详解】解:(1)当,的系数不同时为零时,方程表示一条直线令,解得或;令,解得或所以,的系数同时为零时,故若方程表示一条直线,则,即实数的取值范围为;(2)由(1)知当时,,方程表示的直线的斜率不存在,此时直线方程为;(3)易知且时,直线在轴上的截距存在.依题意,令,得直线在轴上的截距,解得所以实数的值为;(4)易知且时,直线的斜率存在,方程即,故斜率为.因为直线的倾斜角是45°,所以斜率为1,所以,解得所以实数的值为21、(Ⅰ)10(Ⅱ)详见解析【解析】(Ⅰ)由年销售量为a台,按利润的计算公式求得利润,再由利润大于等于0,分离参数a求解;(Ⅱ)分别写出投资生产甲、乙两种工业设备的利润函数,由函数的单调性及二次函数的性质求函数的最大值,然后作出比较得答案【详解】(Ⅰ)由年销售a台甲设备,公司年获利y1=50a-100-am,由y1=50a-100-am≥0(30≤m≤40),得a≥(30≤m≤40),函数f(m)=在[30,40]上为增函数,则f(m)max=10,∴a≥10则对任意m∈[30,40],公司投资生产都不会赔本,a的值为10台;(Ⅱ)由年销售量为x台,按利润的计算公式,有生产甲、乙两设备的年利润y1,y2分别为:y1=50x-(100+mx)=(50-m)x-100,0≤x≤200且x∈Ny2=90x-(200+40x)-0.25x2=-0.25x2+50x-200=-0.25(x-100)2+2300,0≤x≤120,x∈N∵30≤m≤40,∴50-m>0,∴y1=(50-m)x-100为增函数,又∵0≤x≤200,x∈N,∴x=200时,生产甲设备的最大年利润为(50-m)×200-100=9900-200m(万元)又y2=-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《变频控制技术》2022-2023学年期末试卷
- 合同法第52条5项
- 新入职员工的意识培训
- 2025版高考英语一轮复习第1部分人与自我主题群1生活与学习主题语境5认识自我丰富自我完善自我2教师用书教案
- 新高考2025届高考政治小题必练1神奇的货币
- 大班音乐尝葡萄课件
- 2024年拉萨客运资格证答题软件下载
- 2024宾馆转让合同范文
- 2024屋顶防水合同范文
- 2024小额贷款担保合同范本
- 国企纪检监察嵌入式监督的探索与实践
- 浅议小升初数学教学衔接
- 设备安装应急救援预案
- 深基坑工程降水技术及现阶段发展
- 暂堵压裂技术服务方案
- 《孔乙己》公开课一等奖PPT优秀课件
- 美的中央空调故障代码H系列家庭中央空调(第一部分多联机)
- 业主委员会成立流程图
- (完整版)全usedtodo,beusedtodoing,beusedtodo辨析练习(带答案)
- 广联达办公大厦工程施工组织设计
- 疑难病例HELLP综合征
评论
0/150
提交评论