版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省康定市高一上数学期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.不论a取何正实数,函数恒过点()A. B.C. D.2.《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其外形由圆柱和长方体组合而成.已知某组合体由圆柱和长方体组成,如图所示,圆柱的底面直径为1寸,长方体的长、宽、高分别为3.8寸,3寸,1寸,该组合体的体积约为12.6立方寸,若取3.14,则圆柱的母线长约为()A.0.38寸 B.1.15寸C.1.53寸 D.4.59寸3.已知扇形的面积为9,半径为3,则扇形的圆心角(正角)的弧度数为()A.1 B.C.2 D.4.已知函数,则下列是函数图象的对称中心的坐标的是()A. B.C. D.5.若集合中的元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形 B.直角三角形C.钝角三角形 D.等腰三角形6.设命题,则为()A. B.C. D.7.若函数的定义域是,则函数值域为()A. B.C. D.8.对于空间中的直线,以及平面,,下列说法正确的是()A.若,,,则B.若,,,则C.若,,,则D.若,,,则9.已知函数在区间上单调递减,则实数的取值范围是()A. B.C. D.10.已知圆,圆,则两圆的位置关系为A.相离 B.相外切C.相交 D.相内切11.已知集合和关系的韦恩图如下,则阴影部分所表示的集合为()A. B.C. D.12.如图,已知正方体中,异面直线与所成的角的大小是A.B.C.D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.定义在上的函数满足,且时,,则________14.当时,,则a的取值范围是________.15.若函数部分图象如图所示,则此函数的解析式为______.16.若函数满足,且当时,则______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设圆的圆心在轴上,并且过两点.(1)求圆的方程;(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.18.已知函数(1)若存在,使得成立,则求的取值范围;(2)将函数的图象上每个点纵坐标不变,横坐标缩短到原来的,得到函数的图象,求函数在区间内的所有零点之和19.已知函数,.(1)若函数在为增函数,求实数的取值范围;(2)若函数为偶函数,且对于任意,,都有成立,求实数的取值范围.20.已知函数.(1)在平面直角坐标系中画出函数的图象;(不用列表,直接画出草图.(2)根据图象,直接写出函数的单调区间;(3)若关于的方程有四个解,求的取值范围21.已知.(1)若是奇函数,求的值,并判断的单调性(不用证明);(2)若函数在区间(0,1)上有两个不同的零点,求的取值范围.22.已知正方体ABCD-的棱长为2.(1)求三棱锥的体积;(2)证明:.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】令指数为0,即可求得函数恒过点【详解】令x+1=0,可得x=-1,则∴不论取何正实数,函数恒过点(-1,-1)故选A【点睛】本题考查指数函数的性质,考查函数恒过定点,属于基础题2、C【解析】先求出长方体的体积,进而求出圆柱的体积,利用求出的圆柱体体积和圆柱的底面半径为0.5寸,求出圆柱的母线长【详解】由题意得,长方体的体积为(立方寸),故圆柱的体积为(立方寸).设圆柱的母线长为l,则由圆柱的底面半径为0.5寸,得,计算得:(寸).故选:C3、C【解析】利用扇形面积公式即可求解.【详解】设扇形的圆心角的弧度数为,由题意得,得.故选:C.4、A【解析】根据三角函数性质计算对称中心【详解】令,则,故图象的对称中心为故选:A5、D【解析】根据集合元素的互异性即可判断.【详解】由题可知,集合中的元素是的三边长,则,所以一定不是等腰三角形故选:D6、D【解析】根据全称量词否定的定义可直接得到结果.【详解】根据全称量词否定的定义可知:为:,使得.故选:.【点睛】本题考查含量词的命题的否定,属于基础题.7、A【解析】根据的单调性求得正确答案.【详解】根据复合函数单调性同增异减可知在上递增,,即.故选:A8、D【解析】利用线面关系,面面关系的性质逐一判断.【详解】解:对于A选项,,可能异面,故A错误;对于B选项,可能有,故B错误;对于C选项,,的夹角不一定为90°,故C错误;故对D选项,因为,,故,因为,故,故D正确.故选:D.【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题.9、C【解析】求出函数的定义域,由单调性求出a的范围,再由函数在上有意义,列式计算作答.【详解】函数定义域为,,因在,上单调,则函数在,上单调,而函数在区间上单调递减,必有函数在上单调递减,而在上递增,则在上递减,于是得,解得,由,有意义得:,解得,因此,,所以实数的取值范围是.故选:C10、A【解析】利用半径之和与圆心距的关系可得正确的选项.【详解】圆,即,圆心为(0,3),半径为1,圆,即,圆心为(4,0),半径为3..所以两圆相离,故选:A.11、B【解析】首先判断出阴影部分表示,然后求得,再求得.【详解】依题意可知,,且阴影部分表示.,所以.故选:B【点睛】本小题主要考查根据韦恩图进行集合的运算,属于基础题.12、C【解析】在正方体中,利用线面垂直的判定定理,证得平面,由此能求出结果【详解】如图所示,在正方体中,连结,则,,由线面垂直的判定定理得平面,所以,所以异面直线与所成的角的大小是故选C本题主要考查了直线与平面垂直判定与证明,以及异面直线所成角的求解,其中解答中牢记异面直线所成的求解方法和转化思想的应用是解答的关键,平时注意空间思维能力的培养,着重考查了推理与论证能力,属于基础题二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据题意可得,再根据对数运算法则结合时的解析式,即可得答案;【详解】由可得函数为奇函数,由可得,故函数的周期为4,所以,因为,所以..故答案为:.【点睛】本题考查函数奇偶性及对数的运算法则,考查逻辑推理能力、运算求解能力.14、【解析】分类讨论解一元二次不等式,然后确定参数范围【详解】,若,则或,此时时,不等式成立,若,则或,要满足题意,则,即综上,故答案为:15、.【解析】由周期公式可得,代入点解三角方程可得值,进而可得解析式.【详解】由题意,周期,解得,所以函数,又图象过点,所以,得,又,所以,故函数的解析式为.故答案为:.【点睛】本题考查三角函数解析式的求解,涉及系数的意义,属于基础题.16、1009【解析】推导出,当时,从而当时,,,由此能求出的值【详解】∵函数满足,∴,∵当时,∴当时,,,∴故答案为1009【点睛】本题主要考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)或.【解析】(1)圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,(2)设M,N的中点为H,假如以为直径的圆能过原点,则.,设是直线与圆的交点,将代入圆的方程得:.∴.∴的中点为.代入即可求得,解得.再检验即可试题解析:(1)∵圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,∴圆的方程为.(2)设是直线与圆的交点,将代入圆的方程得:.∴.∴的中点为.假如以为直径的圆能过原点,则.∵圆心到直线的距离为,∴.∴,解得.经检验时,直线与圆均相交,∴的方程为或.点睛:直线和圆的方程的应用,直线和圆的位置关系,务必牢记d与r的大小关系对应的位置关系结论的理解.18、(1);(2)【解析】(1)由三角函数公式化简可得f(x)=sin(2x),由存在,使得成立,只需fmax(x)≥a即可;(2)由函数图象变换可得,即求g(x)0的零点,由三角函数的对称性可得【详解】(1).若存在,使得成立,则只需即可∵,∴,∴当,即时,有最大值1,故.(2)依题意可得,由得,由图可知,在上有4个零点:,根据对称性有,从而所有零点和为.【点睛】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,三角函数的图象和性质,涉及和差角的三角函数公式,考查了数形结合思想,属中档题19、(1)(2)【解析】(1)利用定义法证明函数的单调性,依题意可得,即,参变分离可得对恒成立,再根据指数函数的性质计算可得;(2)由函数为偶函数,得到,即可求出的值,从而得到的解析式,再利用基本不等式得到,依题意,可得对任意恒成立,即对任意恒成立,①由有意义,求得;②由,得,即可得到对任意恒成立,从而求出,从而求出参数的取值范围;【小问1详解】解:设,且,则∵函数在上为增函数,∴恒成立又∵,∴,∴恒成立,即对恒成立当时,的取值范围为,故,即实数取值范围为.【小问2详解】解:∵为偶函数,∴对任意都成立,又∵上式对任意都成立,∴,∴,∴,当且仅当时等号成立,∴的最小值为0,∴由题意,可得对任意恒成立,∴对任意恒成立①由有意义,得在恒成立,得在恒成立,又在上值域为,故②由,得,得,得,得,得,∴对任意恒成立,又∵在的最大值为,∴,由①②得,实数的取值范围为.20、(1)作图见解析;(2)增区间为和;减区间为和;(3).【解析】(1)化简函数的解析式为分段函数,结合二次函数的图象与性质,即可画出函数的图象;(2)由(1)中的图象,直接写出函数的单调区间;(3)把方程有四个解等价于函数与的图象有四个交点,利用函数的图象,即可求解.【详解】(1)由题意,函数,所以的图象如右图所示:(2)由(1)中的函数图象,可得函数的单调增区间为和,单调减区间为和.(3)由方程有四个解等价于函数与的图象有四个交点,又由函数的最小值为,结合图象可得,即实数的取值范围21、(1)答案见解析;(2)【解析】(1)函数为奇函数,则,据此可得,且函数在上单调递增;(2)原问题等价于在区间(0,1)上有两个不同的根,换元令,结合二次函数的性质可得的取值范围是.试题解析:(1)因为是奇函数,所以,所以;在上是单调递增函数;(2)
在区间(0,1)上有两个不同的零点,等价于方程在区间(0,1)上有两个不同的根,即方程在区间(0,1)上有两个不同的根,所以方程在区间上有两个不同的根,画出函数在(1,2)上的图象,如下图,由图知,当直线y=a与函数的图象有2个交点时,所以的取值范围为.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 毕业自我评价15篇
- 个人保证书集锦15篇
- 战友聚会致辞(15篇)
- 学生毕业晚会策划书12篇
- 四年级下册语文说课稿锦集六篇
- 客服辞职报告15篇
- 秋季幼儿园中班工作计划
- 出纳的实习报告范文锦集10篇
- 晶状体病-教学课件
- 健康检测设备代理销售合同(2篇)
- GB/T 42449-2023系统与软件工程功能规模测量IFPUG方法
- 酒店装修工程预算表EXCEL模板(推荐)
- NY 5052-2001无公害食品海水养殖用水水质
- 【讲座】2020年福建省高职分类考试招生指导讲座
- 性格决定命运课件
- 学习会计基础工作规范课件
- 双面埋弧焊螺旋钢管公称外公壁厚和每米理论重量
- 富士施乐VC2265打印机使用说明SPO
- 服务态度决定客户满意度试题含答案
- 教科版四年级科学上册全册复习教学设计及知识点整理
- 重庆万科渠道制度管理办法2022
评论
0/150
提交评论