2024届山西省吕梁学院附中高一数学第一学期期末调研试题含解析_第1页
2024届山西省吕梁学院附中高一数学第一学期期末调研试题含解析_第2页
2024届山西省吕梁学院附中高一数学第一学期期末调研试题含解析_第3页
2024届山西省吕梁学院附中高一数学第一学期期末调研试题含解析_第4页
2024届山西省吕梁学院附中高一数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山西省吕梁学院附中高一数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.已知幂函数y=f(x)经过点(3,),则f(x)()A.是偶函数,且在(0,+∞)上是增函数B.是偶函数,且在(0,+∞)上是减函数C.是奇函数,且在(0,+∞)上是减函数D.是非奇非偶函数,且在(0,+∞)上是增函数2.已知是定义在上的单调函数,满足,则函数的零点所在区间为()A. B.C. D.3.已知集合,则A. B.C.( D.)4.已知函数,若,则实数的取值范围是A. B.C. D.5.函数()的最大值为()A. B.1C.3 D.46.若函数在上的最大值为4,则的取值范围为()A. B.C. D.7.已知函数为奇函数,且当时,,则()A. B.C. D.8.将函数()的图象向右平移个单位长度后,得到函数的图象,若为偶函数,则()A.5 B.C.4 D.9.函数是()A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数10.已知是两相异平面,是两相异直线,则下列错误的是A.若,则 B.若,,则C.若,,则 D.若,,,则11.关于函数,下列说法正确的是()A.最小值为0 B.函数为奇函数C.函数是周期为周期函数 D.函数在区间上单调递减12.给定函数:①;②;③;④,其中在区间上单调递减的函数序号是()A.①② B.②③C.③④ D.①④二、填空题(本大题共4小题,共20分)13.在中,,,且在上,则线段的长为______14.若角的终边与角的终边相同,则在内与角的终边相同的角是______15.已知,则的值为__________16.已知函数,若函数有3个零点,则实数a的取值范围是_______.三、解答题(本大题共6小题,共70分)17.已知函数(1)求的解析式,并证明为R上的增函数;(2)当时,且的图象关于点对称.若,对,使得成立,求实数的取值范围18.已知θ是第二象限角,,求:(1);(2)19.已知,函数.(1)求的定义域;(2)若在上的最小值为,求的值.20.已知函数(1)求方程在上的解;(2)求证:对任意的,方程都有解21.已知集合,集合(1)当时,求;(2)若,求实数的取值范围;(3)若,求实数的取值范围22.已知函数,.(1)求的值.(2)设,,,求的值.

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】利用幂函数的定义求得指数的值,得到幂函数的解析式,进而结合幂函数的图象判定单调性和奇偶性【详解】设幂函数的解析式为,将点的坐标代入解析式得,解得,∴,函数的定义域为,是非奇非偶函数,且在上是增函数,故选:D.2、C【解析】设,即,再通过函数的单调性可知,即可求出的值,得到函数的解析式,然后根据零点存在性定理即可判断零点所在区间【详解】设,即,,因为是定义在上的单调函数,所以由解析式可知,在上单调递增而,,故,即因为,,由于,即有,所以故,即的零点所在区间为故选:C【点睛】本题主要考查函数单调性的应用,零点存在性定理的应用,意在考查学生的转化能力,属于较难题3、C【解析】因为所以,故选.考点:1.集合的基本运算;2.简单不等式的解法.4、D【解析】画出图象可得函数在实数集R上单调递增,故由,可得,即,解得或故实数的取值范围是.选D5、C【解析】对函数进行化简,即可求出最值.【详解】,∴当时,取得最大值为3.故选:C.6、C【解析】先分别探究函数与的单调性,再求的最大值.【详解】因为在上单调递增,在上单调递增.而,,所以的取值范围为.【点睛】本题主要考查分段函数的最值以及指数函数,对数函数的单调性,属于中档题.7、C【解析】根据奇函数的定义得到,又由解析式得到,进而得到结果.【详解】因为函数为奇函数,故得到当时,,故选:C.8、C【解析】先由函数图象平移规律可得,再由为偶函数,可得(),则(),再由可得出的值.【详解】由题意可知,因为为偶函数,所以(),则(),因为,所以.故选:C.9、A【解析】由题可得,根据正弦函数的性质即得.【详解】∵函数,∴函数为最小正周期为的奇函数.故选:A.10、B【解析】利用位置关系的判定定理和性质定理逐项判断后可得正确的选项.【详解】对于A,由面面垂直的判定定理可知,经过面的垂线,所以成立;对于B,若,,不一定与平行,不正确;对于C,若,,则正确;对于D,若,,,则正确.故选:B.11、D【解析】根据三角函数的性质,得到的最小值为,可判定A不正确;根据奇偶性的定义和三角函数的奇偶性,可判定C不正确;举例可判定C不正确;根据三角函数的单调性,可判定D正确.【详解】由题意,函数,当时,可得,所以,当时,可得,所以,所以函数的最小值为,所以A不正确;又由,所以函数为偶函数,所以B不正确;因为,,所以,所以不是的周期,所以C不正确;当时,,,当时,,即函数在区间上单调递减,又因为,所以函数在区间上单调递减,所以D正确.故选:D.12、B【解析】①,为幂函数,且的指数,在上为增函数;②,,为对数型函数,且底数,在上为减函数;③,在上为减函数,④为指数型函数,底数在上为增函数,可得解.【详解】①,为幂函数,且的指数,在上为增函数,故①不可选;②,,为对数型函数,且底数,在上为减函数,故②可选;③,在上为减函数,在上为增函数,故③可选;④为指数型函数,底数在上为增函数,故④不可选;综上所述,可选的序号为②③,故选B.【点睛】本题考查基本初等函数的单调性,熟悉基本初等函数的解析式、图像和性质是解决此类问题的关键,属于基础题.二、填空题(本大题共4小题,共20分)13、1【解析】∵,∴,∴,∵且在上,∴线段为的角平分线,∴,以A为原点,如图建立平面直角坐标系,则,D∴故答案为114、【解析】根据角的终边与角的终边相同,得到,再得到,然后由列式,根据,可得整数的值,从而可得.【详解】∵(),∴()依题意,得(),解得(),∴,∴在内与角的终边相同的角为故答案为【点睛】本题考查了终边相同的角的表示,属于基础题.15、【解析】答案:16、(0,1]【解析】先作出函数f(x)图象,根据函数有3个零点,得到函数f(x)的图象与直线y=a有三个交点,结合图象即可得出结果【详解】由题意,作出函数的图象如下:因为函数有3个零点,所以关于x的方程f(x)﹣a=0有三个不等实根;即函数f(x)的图象与直线y=a有三个交点,由图象可得:0<a≤1故答案为:(0,1]【点睛】本题主要考查函数的零点,灵活运用数形结合的思想是求解的关键三、解答题(本大题共6小题,共70分)17、(1);证明见解析.(2)【解析】(1)由求出后可得的解析式,按照增函数的定义证明即可;(2)求出函数在上的值域为,求出在上的最值,根据的最值都属于列式可求出结果.【小问1详解】依题意可得,解得,所以.证明:任取,且,则,因为,,所以,所以为R上的增函数.【小问2详解】依题意,即,当时,为增函数,,,所以在上的值域为,因为在上的最值只可能在或或处取得,所以在上的最值只可能在或或处取得,所以在上的最值只可能是或或,因为的图像关于点对称,所以在上的最值只可能是或或,所以在上的最值只可能是或或或或,若,对,使得成立,则的最值都属于,所以,即,所以,所以,又,所以.【点睛】关键点点睛:(2)中,求出在上的最值,根据题意转化为的最值都属于是解题关键.18、(1);(2).【解析】(1)由,求得,结合三角函数基本关系式,即可求解;(2)由(1)知,根据三角函数的基本关系式和诱导公式,化简为齐次式,即可求解.【详解】(1)由题意,角是第二象限角,且,可得,可得,所以,所以,因为是第二象限角,可得.(2)由(1)知,又由.19、(1);(2).【解析】(1)由题意,函数的解析式有意义,列出不等式组,即可求解函数的定义域;(2)由题意,化简得,设,根据复合函数性质,分类讨论得到函数的单调性,得出函数最值的表达式,即可求解【详解】(1)由题意,函数,满足,解得,即函数的定义域为(2)由,设,则表示开口向下,对称轴的方程为,所以在上为单调递增函数,在单调递减,根据复合函数的单调性,可得因为,函数在为单调递增函数,在单调递减,所以,解得;故实数的值为【点睛】本题主要考查了对数函数的图象与性质的应用,以及与对数函数复合函数的最值问题,其中解答中熟记对数函数的图象与性质,合理分类讨论求解是解答本题的关键,着重考查了推理与运算能力,属于中档试题20、(1)或;(2)证明见解析【解析】(1)根据诱导公式和正弦、余弦函数的性质可得答案;(2)令,分,,三种情况,分别根据零点存在定理可得证.【详解】解:(1)由,得,所以当时,上述方程的解为或,即方程在上的解为或;(2)证明:令,则,①当时,,令,则,即此时方程有解;②当时,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解;③当时,,,又∵在区间上是不间断的一条曲线,由零点存在性定理可知,在区间上有零点,即此时方程有解综上,对任意的,方程都有解21、(1);(2);(3)【解析】(1)求出集合,利用并集的定义可求得集合;(2)利用可得出关于实数的不等式组,由此可解得实数的取值范围;(3)分和两种情况讨论,结合可得出关于实数的不等式组,可求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论