2024届上海市静安区丰华中学高一上数学期末调研模拟试题含解析_第1页
2024届上海市静安区丰华中学高一上数学期末调研模拟试题含解析_第2页
2024届上海市静安区丰华中学高一上数学期末调研模拟试题含解析_第3页
2024届上海市静安区丰华中学高一上数学期末调研模拟试题含解析_第4页
2024届上海市静安区丰华中学高一上数学期末调研模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市静安区丰华中学高一上数学期末调研模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.形如的函数因其函数图象类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数(且)有最小值,则当时的“囧函数”与函数的图象交点个数为A. B.C. D.2.若曲线与直线始终有交点,则的取值范围是A. B.C. D.3.三棱柱中,侧棱垂直于底面,底面三角形是正三角形,是的中点,则下列叙述正确的是①与是异面直线;②与异面直线,且③面④A.② B.①③C.①④ D.②④4.已知点A(2,0)和点B(﹣4,2),则|AB|=()A. B.2C. D.25.一个几何体的三视图如图所示,则该几何体的表面积为A. B.C. D.6.已知集合,则A. B.C.( D.)7.定义在上的偶函数满足:对任意的,,,有,且,则不等式的解集为A. B.C. D.8.下列函数中,既是奇函数,又是增函数的是()①;②;③;④A.①② B.①④C.②③ D.③④9.若,,,,则()A. B.C. D.10.设集合,则()A. B.C. D.11.定义在实数集上的奇函数恒满足,且时,,则()A. B.C.1 D.12.是第四象限角,,则等于A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知且,且,函数的图象过定点A,A在函数的图象上,且函数的反函数过点,则______.14.已知α∈.若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则=______.15.在中,若,则的形状一定是___________三角形.16.设是R上的奇函数,且当时,,则__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知直线l1过点A(1,0),B(3,a-1),直线l2过点M(1,2),N(a+2,4)(1)若l1∥l2,求a的值;(2)若l1⊥l2,求a的值18.已知非空集合,非空集合(1)若,求(用区间表示);(2)若,求m的范围.19.已知,均为锐角,且,是方程的两根.(1)求的值;(2)若,求与的值.20.已知函数(1)求函数的单调区间;(2)求函数在区间上的值域21.已知向量,(1)若与垂直,求实数的值;(2)求向量在方向上的投影22.已知函数,(1)求函数的最大值;(2)若,,求的值

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】当时,,而有最小值,故.令,,其图像如图所示:共4个不同的交点,选C.点睛:考虑函数图像的交点的个数,关键在于函数图像的正确刻画,注意利用函数的奇偶性来简化图像的刻画过程.2、A【解析】本道题目先理解的意义,实则为一个半圆,然后利用图像,绘制出该直线与该圆有交点的大致位置,计算出b的范围,即可.【详解】要使得这两条曲线有交点,则使得直线介于1与2之间,已知1与圆相切,2过点(1,0),则b分别为,故,故选A.【点睛】本道题目考查了圆与直线的位置关系,做此类题可以结合图像,得出b的范围.3、A【解析】对于①,都在平面内,故错误;对于②,为在两个平行平面中且不平行的两条直线,底面三角形是正三角形,是中点,故与是异面直线,且,故正确;对于③,上底面是一个正三角形,不可能存在平面,故错误;对于④,所在的平面与平面相交,且与交线有公共点,故错误.故选A4、D【解析】由平面两点的距离公式计算可得所求值.【详解】由点A(2,0)和点B(﹣4,2),所以故选:D【点睛】本题考查平面上两点间的距离,直接用平面上两点间的距离公式解决,属于基础题.5、D【解析】该几何体为半圆柱,底面为半径为1的半圆,高为2,因此表面积为,选D.6、C【解析】因为所以,故选.考点:1.集合的基本运算;2.简单不等式的解法.7、A【解析】根据对任意的,,,有,判断函数的单调性,结合函数的奇偶性和单调性之间的性质,将不等式转化为不等式组,数形结合求解即可详解】因为对任意的,,当,有,所以,当函数为减函数,又因为是偶函数,所以当时,为增函数,,,作出函数的图象如图:等价为或,由图可知,或,即不等式的解集为,故选A【点睛】本题主要考查抽象函数的奇偶性与单调性的应用,属于难题.将奇偶性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据奇偶性判断出函数在对称区间上的单调性(偶函数在对称区间上单调性相反,奇函数在对称区间单调性相同),然后再根据单调性列不等式求解.8、D【解析】对每个函【解析】判断奇偶性及单调性即可.【详解】对于①,,奇函数,在和上分别单增,不满足条件;对于②,,偶函数,不满足条件;对于③,,奇函数,在R上单增,符合题意;对于④,,奇函数,在R上单增,符合题意;故选:D9、C【解析】由于,所以先由已知条件求出,的值,从而可求出答案【详解】,因为,,所以,,因为,,所以,,则故选:C【点睛】此题考查同角三角函数的关系的应用,考查两角差的余弦公式的应用,考查计算能力,属于基础题.10、B【解析】根据交集定义运算即可【详解】因为,所以,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.11、B【解析】根据函数奇偶性和等量关系,求出函数是周期为4的周期函数,利用函数的周期性进行转化求解即可【详解】解:奇函数恒满足,,即,则,即,即是周期为4的周期函数,所以,故选:B12、B【解析】由的值及α为第四象限角,利用同角三角函数间的基本关系求出cosα的值,即可确定出的值【详解】由题是第四象限角,则故选B【点睛】此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、8【解析】由图象平移变换和指数函数的性质可得点A坐标,然后结合反函数的性质列方程组可解.【详解】函数的图象可以由的图象向右平移2各单位长度,再向上平移3个单位长度得到,故点A坐标为,又的反函数过点,所以函数过点,所以,解得,所以.故答案为:814、-1【解析】根据幂函数,当为奇数时,函数为奇函数,时,函数在(0,+∞)上递减,即可得出答案.【详解】解:∵幂函数f(x)=xα为奇函数,∴可取-1,1,3,又f(x)=xα在(0,+∞)上递减,∴α<0,故=-1.故答案为:-1.15、等腰【解析】根据可得,利用两角和的正弦公式展开,再逆用两角差的正弦公式化简,结合三角形内角的范围可得,即可得的形状.【详解】因,,所以,即,所以,可得:,因为,,所以所以,即,故是等腰三角形.故答案为:等腰.16、【解析】由函数的性质得,代入当时的解析式求出的值,即可得解.【详解】当时,,,是上的奇函数,故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】由两点式求出l1的斜率(1)再由两点求斜率的到l2的斜率,由斜率相等求得a的值;(2)分l1的斜率为0和不为0讨论,当l1的斜率为0时,由M,N的横坐标相等求a得值;不为0时由两直线的斜率乘积等于-1得答案【详解】(1),即,解得(2),即,解得.【点睛】本题考查了直线的一般式方程与两直线平行、垂直的关系,考查了分类讨论的数学思想方法,是基础题18、(1)(2)【解析】(1)分别解出集合A、B,再求;(2)由可得,列不等式即可求出m的范围.【小问1详解】由不等式的解为,即.由,即【小问2详解】由可知,,只需解得.即m的范围为.19、(1)(2);【解析】(1)利用韦达定理求出,再根据两角和的正切公式即可得解;(2)求出,再根据二倍角正切公式即可求得,化弦为切即可求出.【小问1详解】解:因为,均为锐角,且,是方程的两根,所以,所以;【小问2详解】因为,均为锐角,,所以,所以,所以,.20、(1)增区间为;减区间为(2)【解析】(1)利用正弦型函数的单调性直接求即可.(2)整体代换后利用正弦函数的性质求值域.【小问1详解】令,有,令,有,可得函数的增区间为;减区间为;【小问2详解】当时,,,有,故函数在区间上的值域为21、(1);(2).【解析】(1)利用坐标运算表示出,由向量垂直的坐标表示可构造方程求得结果;(2)根据可直接求得结果.【详解】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论