




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市顺义区第一中学2023年高一数学第一学期期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.在空间直角坐标系中,一个三棱锥的顶点坐标分别是,,,.则该三棱锥的体积为()A. B.C. D.22.,,,则的大小关系为()A. B.C. D.3.在中,为边的中点,则()A. B.C. D.4.已知函数的定义域为[1,10],则的定义域为()A. B.C. D.5.设为所在平面内一点,若,则下列关系中正确的是A. B.C. D.6.设函数的最小正周期为,且在内恰有3个零点,则的取值范围是()A. B.C. D.7.已知为偶函数,当时,,当时,,则满足不等式的整数的个数为()A.4 B.6C.8 D.108.若-3和1是函数y=loga(mx2+nx-2)的两个零点,则y=logn|x|的图象大致是()A. B.C. D.9.方程的零点所在的区间为()A. B.C. D.10.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也可用函数的解析式来琢磨函数的图象的特征,如通过函数的解析式可判断其在区间的图象大致为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数的零点为1,则实数a的值为______12.已知函数,若有解,则m的取值范围是______13.命题“,”的否定是_________.14.函数的图象一定过定点P,则P点的坐标是______15.已知,则________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知集合,集合,集合.(1)求;(2)若,求实数的值取范围.17.已知集合,.(1)分别判断元素,与集合A,B的关系;(2)判断集合A与集合B的关系并说明理由.18.已知函数,(,且)(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)设,解不等式19.已知非空集合,非空集合(1)若,求(用区间表示);(2)若,求m的范围.20.已知函数,若区间上有最大值5,最小值2.(1)求的值(2)若,在上单调,求的取值范围.21.已知集合=R.(1)求;(2)求(A);(3)如果非空集合,且A,求的取值范围.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】由题,在空间直角坐标系中找到对应的点,进而求解即可【详解】由题,如图所示,则,故选:A【点睛】本题考查三棱锥的体积,考查空间直角坐标系的应用2、D【解析】根据对数函数的单调性得到,根据指数函数的单调性得到,根据正弦函数的单调性得到.【详解】易知,,因,函数在区间内单调递增,所以,所以.故选:D.3、B【解析】由平面向量的三角形法则和数乘向量可得解【详解】由题意,故选:B【点睛】本题考查了平面向量的线性运算,考查了学生综合分析,数形结合的能力,属于基础题4、B【解析】根据函数的定义域,结合要求的函数形式,列出满足条件的定义域关系,求解即可.【详解】由题意可知,函数的定义域为[1,10],则函数成立需要满足,解得.故选:B.5、A【解析】∵∴−=3(−);∴=−.故选A.6、D【解析】根据周期求出,结合的范围及,得到,把看做一个整体,研究在的零点,结合的零点个数,最终列出关于的不等式组,求得的取值范围【详解】因为,所以.由,得.当时,,又,则因为在上的零点为,,,,且在内恰有3个零点,所以或解得.故选:D7、C【解析】由时的解析式,可先求得不等式的解集.再根据偶函数性质,即可求得整个定义域内满足不等式的解集,即可确定整数解的个数.【详解】当时,,解得,所以;当时,,解得,所以.因为为偶函数,所以不等式的解集为.故整数的个数为8.故选:C【点睛】本题考查了不等式的解法,偶函数性质的应用,属于基础题.8、C【解析】运用零点的定义和一元二次方程的解法可得【详解】根据题意得,解得,∵n=2>1由对数函数的图象得答案为C.故选C【点睛】本题考查零点的定义,一元二次方程的解法9、C【解析】分析函数的单调性,利用零点存在定理可得出结论.【详解】因为函数、均为上的增函数,故函数在上也为增函数,因为,,,,由零点存在定理可知,函数的零点所在的区间为.故选:C.10、A【解析】根据函数的定义域,函数的奇偶性,函数值的符号及函数的零点即可判断出选项.【详解】当时,令,得或,且时,;时,,故排除选项B.因为为偶函数,为奇函数,所以为奇函数,故排除选项C;因为时,函数无意义,故排除选项D;故选:A二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】利用求得的值.【详解】由已知得,即,解得.故答案为:【点睛】本小题主要考查函数零点问题,属于基础题.12、【解析】利用函数的值域,转化方程的实数解,列出不等式求解即可.【详解】函数,若有解,就是关于的方程在上有解;可得:或,解得:或可得.故答案为.【点睛】本题考查函数与方程的应用,考查转化思想有解计算能力.13、,##【解析】根据全称量词命题的否定即可得出结果.【详解】由题意知,命题“”的否定为:.故答案为:.14、(1,4)【解析】已知过定点,由向右平移个单位,向上平移个单位即可得,故根据平移可得到定点.【详解】由向右平移个单位,向上平移个单位得到,过定点,则过定点.【点睛】本题考查指数函数的图象恒过定点以及函数图象的平移问题.图象平移,定点也随之平移,平移后仍是定点.15、【解析】利用诱导公式化简等式,可求出的值,将所求分式变形为,在所得分式的分子和分母中同时除以,将所求分式转化为只含的代数式,代值计算即可.【详解】,,,因此,.故答案为:.【点睛】本题考查利用诱导公式和弦化切思想求值,解题的关键就是求出的值,考查计算能力,属于基础题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)或;(2).【解析】(1)根据一元二次不等式的解法求出集合、,即可求出;(2)由,可知,得到不等式组,即得.【小问1详解】∵,,,或,∴或;【小问2详解】∵,,由,得,,解得,∴实数的值取范围为.17、(1),,,;(2),理由见解析.【解析】(1)根据集合的描述,判断是否存在使,属于集合A,B即可.(2)法一:由(1)结论,并判断是否有,即知A与B的关系;法二:={x|x是的整数倍},={x|x是的奇数倍},即知A与B的关系;【小问1详解】法一:令,得,故;令,得,故.同理,令,得,故;令,得,故.法二:由题意得:,又,故,;,.【小问2详解】法一:由(1)得:,,故;又,,由,得,故,所以,都有,即,又,所以.法二:由题意得={x|x是的整数倍},={x|x是的奇数倍},因为奇数集是整数集的真子集,所以集合B是集合A的真子集,即.18、(1);(2)奇函数,理由见解析;(3).【解析】(1)由对数真数大于零可构造不等式组求得结果;(2)根据奇偶性定义判断即可得到结论;(3)将函数化为,由对数函数性质可知,解不等式求得结果.【详解】(1)由题意得:,解得:,定义域为.(2),为定义在上的奇函数.(3)当时,,由得:,解得:,的解集为.19、(1)(2)【解析】(1)分别解出集合A、B,再求;(2)由可得,列不等式即可求出m的范围.【小问1详解】由不等式的解为,即.由,即【小问2详解】由可知,,只需解得.即m的范围为.20、(1)或;(2).【解析】(1)分和两种情况讨论,根据单调性的不同分别代入求值即可;(2)易知也为二次函数,若要在区间上单调,则对称轴在区间外即可.【详解】(1)由可得二次函数的对称轴为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025企业内部培训资料:11 护理工作礼仪
- 护理行政大查房实施规范
- 植物介绍教学课件
- 康复治疗医患沟通
- 患者术后疼痛护理
- 设备维修安排培训体系构建
- 2025至2030年中国钢木结构吊具行业发展研究报告
- 护理方法宣教
- 康复治疗技术调查
- 肺炎患者护理规范与实施要点
- XBT 240-2023 氟化铒 (正式版)
- YY 9706.230-2023 正式版 医用电气设备 第2-30部分:自动无创血压计的基本安全和基本性能专用要求
- 医院检验科实验室生物安全管理手册
- 第十三章被子植物2
- 4马克思主义宗教观
- 中广核研究院热室设施建设项目 环境影响报告书(建造阶段)
- 税务师-税法一-专项练习题-专题一增值税
- 音乐中的常用速度、力度记号与常用表情术语
- 2023-2024年中国消毒杀毒产品市场分析及发展趋势报告
- 爱宝s-990p打卡机说明书
- 西师版四年级下册100道口算题大全(全册齐全)
评论
0/150
提交评论