广东省东莞市石碣镇2024届中考数学全真模拟试卷含解析_第1页
广东省东莞市石碣镇2024届中考数学全真模拟试卷含解析_第2页
广东省东莞市石碣镇2024届中考数学全真模拟试卷含解析_第3页
广东省东莞市石碣镇2024届中考数学全真模拟试卷含解析_第4页
广东省东莞市石碣镇2024届中考数学全真模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省东莞市石碣镇2024届中考数学全真模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.方程的根是()A.x=2 B.x=0 C.x1=0,x2=-2 D.x1=0,x2=22.tan45°的值等于()A. B. C. D.13.在实数0,-π,,-4中,最小的数是()A.0 B.-π C. D.-44.已知实数a<0,则下列事件中是必然事件的是()A.a+3<0 B.a﹣3<0 C.3a>0 D.a3>05.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与相似的是()A. B.C. D.6.不等式组的解在数轴上表示为()A. B. C. D.7.已知二次函数y=x2+bx﹣9图象上A、B两点关于原点对称,若经过A点的反比例函数的解析式是y=,则该二次函数的对称轴是直线()A.x=1 B.x= C.x=﹣1 D.x=﹣8.如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为()A. B. C. D.9.下列所给函数中,y随x的增大而减小的是()A.y=﹣x﹣1 B.y=2x2(x≥0)C. D.y=x+110.△ABC的三条边长分别是5,13,12,则其外接圆半径和内切圆半径分别是()A.13,5 B.6.5,3 C.5,2 D.6.5,2二、填空题(共7小题,每小题3分,满分21分)11.已知,且,则的值为__________.12.若一组数据1,2,3,的平均数是2,则的值为______.13.在函数y=xx14.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为______.15.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.

16.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,过点C作⊙O的切线交AB的延长线于点P,若∠P=40°,则∠ADC=____°.17.一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,从中任意摸出一个球恰好是红球的概率是____.三、解答题(共7小题,满分69分)18.(10分)先化简,再求值:,其中x=,y=.19.(5分)边长为6的等边△ABC中,点D,E分别在AC,BC边上,DE∥AB,EC=2如图1,将△DEC沿射线EC方向平移,得到△D′E′C′,边D′E′与AC的交点为M,边C′D′与∠ACC′的角平分线交于点N.当CC′多大时,四边形MCND′为菱形?并说明理由.如图2,将△DEC绕点C旋转∠α(0°<α<360°),得到△D′E′C,连接AD′,BE′.边D′E′的中点为P.①在旋转过程中,AD′和BE′有怎样的数量关系?并说明理由;②连接AP,当AP最大时,求AD′的值.(结果保留根号)20.(8分)先化简,再求值:,其中x为方程的根.21.(10分)计算:27﹣(﹣2)0+|1﹣3|+2cos30°.22.(10分)计算:(1)(2)23.(12分)如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N.(1)求点A、B的坐标;(2)若BN=MN,且S△MBC=,求a的值;(3)若∠BMC=2∠ABM,求的值.24.(14分)发现如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣)×180°.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】试题解析:x(x+1)=0,

⇒x=0或x+1=0,

解得x1=0,x1=-1.

故选C.2、D【解题分析】

根据特殊角三角函数值,可得答案.【题目详解】解:tan45°=1,故选D.【题目点拨】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.3、D【解题分析】

根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可求解.【题目详解】∵正数大于0和一切负数,∴只需比较-π和-1的大小,∵|-π|<|-1|,∴最小的数是-1.故选D.【题目点拨】此题主要考查了实数的大小的比较,注意两个无理数的比较方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.4、B【解题分析】A、a+3<0是随机事件,故A错误;B、a﹣3<0是必然事件,故B正确;C、3a>0是不可能事件,故C错误;D、a3>0是随机事件,故D错误;故选B.点睛:本题考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件指一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5、B【解题分析】

根据相似三角形的判定方法一一判断即可.【题目详解】解:因为中有一个角是135°,选项中,有135°角的三角形只有B,且满足两边成比例夹角相等,故选:B.【题目点拨】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.6、C【解题分析】

先解每一个不等式,再根据结果判断数轴表示的正确方法.【题目详解】解:由不等式①,得3x>5-2,解得x>1,由不等式②,得-2x≥1-5,解得x≤2,∴数轴表示的正确方法为C.故选C.【题目点拨】考核知识点:解不等式组.7、D【解题分析】

设A点坐标为(a,),则可求得B点坐标,把两点坐标代入抛物线的解析式可得到关于a和b的方程组,可求得b的值,则可求得二次函数的对称轴.【题目详解】解:∵A在反比例函数图象上,∴可设A点坐标为(a,).∵A、B两点关于原点对称,∴B点坐标为(﹣a,﹣).又∵A、B两点在二次函数图象上,∴代入二次函数解析式可得:,解得:或,∴二次函数对称轴为直线x=﹣.故选D.【题目点拨】本题主要考查二次函数的性质,待定系数法求二次函数解析式,根据条件先求得b的值是解题的关键,注意掌握关于原点对称的两点的坐标的关系.8、A【解题分析】

过E作EG∥AB,交AC于G,易得CG=EG,EF=AF,依据△ABC∽△GEF,即可得到EG:EF:GF,根据斜边的长列方程即可得到结论.【题目详解】过E作EG∥BC,交AC于G,则∠BCE=∠CEG.∵CE平分∠BCA,∴∠BCE=∠ACE,∴∠ACE=∠CEG,∴CG=EG,同理可得:EF=AF.∵BC∥GE,AB∥EF,∴∠BCA=∠EGF,∠BAC=∠EFG,∴△ABC∽△GEF.∵∠ABC=90°,AB=6,BC=8,∴AC=10,∴EG:EF:GF=BC:BC:AC=4:3:5,设EG=4k=AG,则EF=3k=CF,FG=5k.∵AC=10,∴3k+5k+4k=10,∴k=,∴EF=3k=.故选A.【题目点拨】本题考查了相似三角形的判定与性质,等腰三角形的性质以及勾股定理的综合运用,解决问题的关键是作辅助线构相似三角形以及构造等腰三角形.9、A【解题分析】

根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项.【题目详解】解:A.此函数为一次函数,y随x的增大而减小,正确;B.此函数为二次函数,当x<0时,y随x的增大而减小,错误;C.此函数为反比例函数,在每个象限,y随x的增大而减小,错误;D.此函数为一次函数,y随x的增大而增大,错误.故选A.【题目点拨】本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键.10、D【解题分析】

根据边长确定三角形为直角三角形,斜边即为外切圆直径,内切圆半径为,【题目详解】解:如下图,∵△ABC的三条边长分别是5,13,12,且52+122=132,∴△ABC是直角三角形,其斜边为外切圆直径,∴外切圆半径==6.5,内切圆半径==2,故选D.【题目点拨】本题考查了直角三角形内切圆和外切圆的半径,属于简单题,熟悉概念是解题关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解题分析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.12、1【解题分析】

根据这组数据的平均数是1和平均数的计算公式列式计算即可.【题目详解】∵数据1,1,3,的平均数是1,∴,解得:.故答案为:1.【题目点拨】本题考查了平均数的定义,根据平均数的定义建立方程求解是解题的关键.13、x≠-3【解题分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使xx+3在实数范围内有意义,必须14、

【解题分析】试题分析:将4400000用科学记数法表示为:4.4×1.故答案为4.4×1.考点:科学记数法—表示较大的数.15、(-2,-2)【解题分析】

先根据“相”和“兵”的坐标确定原点位置,然后建立坐标系,进而可得“卒”的坐标.【题目详解】“卒”的坐标为(﹣2,﹣2),故答案是:(﹣2,﹣2).【题目点拨】考查了坐标确定位置,关键是正确确定原点位置.16、115°【解题分析】

根据过C点的切线与AB的延长线交于P点,∠P=40°,可以求得∠OCP和∠OBC的度数,又根据圆内接四边形对角互补,可以求得∠D的度数,本题得以解决.【题目详解】解:连接OC,如右图所示,

由题意可得,∠OCP=90°,∠P=40°,

∴∠COB=50°,

∵OC=OB,

∴∠OCB=∠OBC=65°,

∵四边形ABCD是圆内接四边形,

∴∠D+∠ABC=180°,

∴∠D=115°,

故答案为:115°.【题目点拨】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.17、.【解题分析】

根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【题目详解】∵一个不透明口袋里装有形状、大小都相同的2个红球和4个黑球,∴从中任意摸出一个球恰好是红球的概率为:,故答案为.【题目点拨】本题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.三、解答题(共7小题,满分69分)18、x+y,.【解题分析】试题分析:根据分式的减法和除法可以化简题目中的式子,然后将x、y的值代入即可解答本题.试题解析:原式===x+y,当x=,y==2时,原式=﹣2+2=.19、(1)当CC'=时,四边形MCND'是菱形,理由见解析;(2)①AD'=BE',理由见解析;②.【解题分析】

(1)先判断出四边形MCND'为平行四边形,再由菱形的性质得出CN=CM,即可求出CC';(2)①分两种情况,利用旋转的性质,即可判断出△ACD≌△BCE'即可得出结论;②先判断出点A,C,P三点共线,先求出CP,AP,最后用勾股定理即可得出结论.【题目详解】(1)当CC'=时,四边形MCND'是菱形.理由:由平移的性质得,CD∥C'D',DE∥D'E',∵△ABC是等边三角形,∴∠B=∠ACB=60°,∴∠ACC'=180°-∠ACB=120°,∵CN是∠ACC'的角平分线,∴∠D'E'C'=∠ACC'=60°=∠B,∴∠D'E'C'=∠NCC',∴D'E'∥CN,∴四边形MCND'是平行四边形,∵∠ME'C'=∠MCE'=60°,∠NCC'=∠NC'C=60°,∴△MCE'和△NCC'是等边三角形,∴MC=CE',NC=CC',∵E'C'=2,∵四边形MCND'是菱形,∴CN=CM,∴CC'=E'C'=;(2)①AD'=BE',理由:当α≠180°时,由旋转的性质得,∠ACD'=∠BCE',由(1)知,AC=BC,CD'=CE',∴△ACD'≌△BCE',∴AD'=BE',当α=180°时,AD'=AC+CD',BE'=BC+CE',即:AD'=BE',综上可知:AD'=BE'.②如图连接CP,在△ACP中,由三角形三边关系得,AP<AC+CP,∴当点A,C,P三点共线时,AP最大,如图1,在△D'CE'中,由P为D'E的中点,得AP⊥D'E',PD'=,∴CP=3,∴AP=6+3=9,在Rt△APD'中,由勾股定理得,AD'=.【题目点拨】此题是四边形综合题,主要考查了平行四边形的判定和性质,菱形的性质,平移和旋转的性质,等边三角形的判定和性质,勾股定理,解(1)的关键是四边形MCND'是平行四边形,解(2)的关键是判断出点A,C,P三点共线时,AP最大.20、1【解题分析】

先将除式括号里面的通分后,将除法转换成乘法,约分化简.然后解一元二次方程,根据分式有意义的条件选择合适的x值,代入求值.【题目详解】解:原式=.解得,,∵时,无意义,∴取.当时,原式=.21、53【解题分析】

(1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果.【题目详解】原式=33=33=53【题目点拨】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22、(1);(2)1.【解题分析】

(1)根据二次根式的混合运算法则即可;(2)根据特殊角的三角函数值即可计算.【题目详解】解:(1)原式=;(2)原式.【题目点拨】本题考查了二次根式运算以及特殊角的三角函数值的运算,解题的关键是熟练掌握运算法则.23、(1)A(﹣4,0),B(3,0);(2);(3).【解题分析】

(1)设y=0,可求x的值,即求A,B的坐标;(2)作MD⊥x轴,由CO∥MD可得OD=3,把x=-3代入解析式可得M点坐标,可得ON的长度,根据S△BMC=,可求a的值;(3)过M点作ME∥AB,设NO=m,=k,可以用m,k表示CO,EO,MD,ME,可求M点坐标,代入可得k,m,a的关系式,由CO=2km+m=-12a,可得方程组,解得k,即可求结果.【题目详解】(1)设y=0,则0=ax2+ax﹣12a(a<0),∴x1=﹣4,x2=3,∴A(﹣4,0),B(3,0)(2)如图1,作MD⊥x轴,∵MD⊥x轴,OC⊥x轴,∴MD∥OC,∴=且NB=MN,∴OB=OD=3,∴D(﹣3,0),∴当x=﹣3时,y=﹣6a,∴M(﹣3,﹣6a),∴MD=﹣6a,∵ON∥MD∴,∴ON=﹣3a,根据题意得:C(0,﹣12a),∵S△MBC=,∴(﹣12a+3a)×6=,a=﹣,(3)如图2:过M点作ME∥AB,∵ME∥AB,∴∠EMB=∠ABM且∠CMB=2∠ABM,∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,∴△CME≌△MNE,∴CE=EN,设NO=m,=k(k>0),∵ME∥AB,∴==k,∴ME=3k,EN=km=CE,∴EO=km+m,CO=CE+EN+ON=2km+m=﹣12a,即,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论