版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届湖南省重点中学数学高一上期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知直线,圆.点为直线上的动点,过点作圆的切线,切点分别为.当四边形面积最小时,直线方程是()A. B.C. D.2.已知函数的图象如图所示,则函数与在同一直角坐标系中的图象是A. B.C. D.3.已知圆:与圆:,则两圆公切线条数为A.1条 B.2条C.3条 D.4条4.始边是x轴正半轴,则其终边位于第()象限A.一 B.二C.三 D.四5.设,则与终边相同的角的集合为A. B.C. D.6.某四面体的三视图如图,则该四面体的体积是A.1 B.C. D.27.已知x,,且,则A. B.C. D.8.若函数是偶函数,则满足的实数的取值范围是A. B.C. D.9.已知直线与平行,则实数的取值是A.-1或2 B.0或1C.-1 D.210.函数部分图象如图所示,则下列结论错误的是()A.频率为 B.周期为C.振幅为2 D.初相为二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数(,,)的部分图象如图,则函数的单调递增区间为______.12.已知函数(,)的部分图象如图所示,则的值为13.在空间直角坐标系中,一点到三个坐标轴的距离都是1,则该点到原点的距离是______答案】14.命题“,”的否定是______15.设奇函数在上是增函数,且,若对所有的及任意的都满足,则的取值范围是__________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数(1)求函数f(x)的最小正周期和单调递增区间;(2)求函数f(x)在区间上的最大值和最小值17.求函数的定义域,并指出它的单调性及单调区间18.某品牌手机公司的年固定成本为50万元,每生产1万部手机需增加投入20万元,该公司一年内生产万部手机并全部销售完当年销售量不超过40万部时,销售1万部手机的收入万元;当年销售量超过40万部时,销售1万部手机的收入万元(1)写出年利润万元关于年销售量万部的函数解析式;(2)年销售量为多少万部时,利润最大,并求出最大利润.19.设全集为R,集合,(1)求;(2)求20.已知函数f(x)=(1)判断函数f(x)的奇偶性;(2)判断并证明函数f(x)的单调性;(3)解不等式:f(x2-2x)+f(3x-2)<0;21.已知,(1)求和的值(2)求以及的值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】求得点C到直线l的距离d,根据,等号成立时,求得点P,进而求得过的圆的方程,与已知圆的方程联立求解.【详解】设点C到直线l的距离为,由,此时,,方程为,即,与直线联立得,因为共圆,其圆心为,半径为,圆的方程为,与联立,化简整理得,答案:B2、C【解析】根据幂函数的图象和性质,可得a∈(0,1),再由指数函数和对数函数的图象和性质,可得答案【详解】由已知中函数y=xa(a∈R)的图象可知:a∈(0,1),故函数y=a﹣x为增函数与y=logax为减函数,故选C【点睛】本题考查知识点是幂函数的图象和性质,指数函数和对数函数的图象和性质,难度不大,属于基础题3、D【解析】求出两圆的圆心与半径,利用圆心距判断两圆外离,公切线有4条【详解】圆C1:x2+y2﹣2x=0化为标准形式是(x﹣1)2+y2=1,圆心是C1(1,0),半径是r1=1;圆C2:x2+y2﹣4y+3=0化为标准形式是x2+(y﹣2)2=1,圆心是C2(0,2),半径是r2=1;则|C1C2|r1+r2,∴两圆外离,公切线有4条故选D【点睛】本题考查了两圆的一般方程与位置关系应用问题,是基础题4、B【解析】将转化为内的角,即可判断.【详解】,所以的终边和的终边相同,即落在第二象限.故选:B5、B【解析】由终边相同的角的概念,可直接得出结果.【详解】因为,所以与终边相同的角为.故选B【点睛】本题主要考查终边相同的角,熟记概念即可得出结果,属于基础题型.6、B【解析】在正方体ABCDA1B1C1D1中还原出三视图的直观图,其是一个三个顶点在正方体的右侧面、一个顶点在左侧面的三棱锥,即为D1BCB1,如图所示,该四面体的体积为.故选B点睛:三视图问题的常见类型及解题策略(1)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线表示,不能看到的部分用虚线表示(2)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题(3)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图7、C【解析】原不等式变形为,由函数单调递增,可得,利用指数函数、对数函数、幂函数的单调性逐一分析四个选项即可得答案【详解】函数为增函数,,即,可得,由指数函数、对数函数、幂函数的单调性可得,B,D错误,根据递增可得C正确,故选C【点睛】本题考查指数函数、对数函数、幂函数的单调性,是中档题.函数单调性的应用比较广泛,是每年高考的重点和热点内容.归纳起来,常见的命题探究角度有:(1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小;(3)解函数不等式;(4)求参数的取值范围或值8、D【解析】结合为偶函数,建立等式,利用对数计算性质,计算m值,结合单调性,建立不等式,计算x范围,即可【详解】,,,,令,则,则,当,递增,结合复合函数单调性单调递增,故偶函数在上是增函数,所以由,得,.【点睛】本道题考查了偶函数性质和函数单调性知识,结合偶函数,计算m值,利用单调性,建立关于x的不等式,即可9、C【解析】因为两直线的斜率都存在,由与平行得,当时,两直线重合,,故选C.10、A【解析】根据图象可得、,然后利用求出即可.【详解】由图可知,C正确;,则,,B正确;,A错误;因为,则,即,又,则,D正确故选:A二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由函数的图象得到函数的周期,同时根据图象的性质求得一个单调增区间,然后利用周期性即可写出所有的增区间.【详解】由图可知函数f(x)的最小正周期.如图所示,一个周期内的最低点和最高点分别记作,分别作在轴上的射影,记作,根据的对称性可得的横坐标分别为,∴是函数f(x)的一个单调增区间,∴函数的单调增区间是,故答案为:,【点睛】本题关键在于掌握函数图象的对称性和周期性.一般往往先从函数的图象确定函数中的各个参数的值,再利用函数的解析式和正弦函数的性质求得单调区间,但是直接由图象得到函数的周期,并根据函数的图象的性质求得一个单调增区间,进而写出所有的增区间,更为简洁.12、【解析】先计算周期,则,函数,又图象过点,则,∴由于,则.考点:依据图象求函数的解析式;13、【解析】设出该点的坐标,根据题意列方程组,从而求得该点到原点的距离【详解】设该点的坐标是(x,y,z),∵该点到三个坐标轴的距离都是1,∴x2+y2=1,x2+z2=1,y2+z2=1,∴x2+y2+z2,∴该点到原点的距离是故答案为【点睛】本题考查了空间中点的坐标与应用问题,是基础题14、.【解析】全称命题的否定:将任意改为存在并否定原结论,即可知原命题的否定.【详解】由全称命题的否定为特称命题,所以原命题的否定:.故答案为:.15、【解析】由题意得,又因为在上是增函数,所以当,任意的时,,转化为在时恒成立,即在时恒成立,即可求解.【详解】由题意,得,又因为在上是增函数,所以当时,有,所以在时恒成立,即在时恒成立,转化为在时恒成立,所以或或解得:或或,即实数的取值范围是【点睛】本题考查函数的恒成立问题的求解,求解的关键是把不等式的恒成立问题进行等价转化,考查分析问题和解答问题的能力,属于中档试题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)最小正周期为,单调递增区间为,k∈Z;(2)最大值为,最小值为【解析】(1)先通过降幂公式化简得,进而求出最小正周期和单调递增区间;(2)通过,求出,进而求出最大值和最小值.【小问1详解】,∴函数f(x)的最小正周期为,令,k∈Z,则,k∈Z,∴函数f(x)的单调递增区间为,k∈Z【小问2详解】∵,∴,则,∴,∴函数f(x)的最大值为,最小值为17、答案见解析【解析】由题,解不等式得定义域,再根据,利用整体代换法求解函数的单调递减区间即可.【详解】解:要使函数有意义,应满足,解得∴函数定义域为.∵,∴,解得,∴函数的单调递减区间为.18、(1);(2)年销售量为45万部时,最大利润为7150万元.【解析】(1)依题意,分和两段分别求利润=收入-成本,即得结果;(2)分和两段分别求函数的最大值,再比较两个最大值的大小,即得最大利润.【详解】解:(1)依题意,生产万部手机,成本是(万元),故利润,而,故,整理得,;(2)时,,开口向下的抛物线,在时,利润最大值为;时,,其中,在上单调递减,在上单调递增,故时,取得最小值,故在时,y取得最大值而,故年销售量为45万部时,利润最大,最大利润为7150万元.【点睛】方法点睛:分段函数求最值时,需要每一段均研究最值,再比较出最终的最值.19、(1);(2)或.【解析】(1)根据给定条件利用交集的定义直接计算即可作答.(2)利用并集的定义求出,再借助补集的定义直接求解作答.【小问1详解】因为,,所以.【小问2详解】因为,,则,而全集为R,所以或.20、(1)奇函数(2)单调增函数,证明见解析(3)【解析】(1)按照奇函数的定义判断即可;(2)按照单调性的定义判断证明即可;(3)由单调递增解不等式即可.【小问1详解】易知函数定义域R,所以函数为奇函数.【小问2详解】设任意x1,x2∈R且x1<x2,f(x1)-f(x2)==∵x1<x2,∴,∴f(x1)<f(x2),∴f(x)是在(-∞,+∞)上是单调增函数【小问3详解】∵f(x2-2x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年包缝机农业行业全景深度调查及投资价值评估分析报告
- 2024-2030年功能型饮料行业市场发展分析及发展前景与投资机会研究报告
- 2024-2030年农业灌溉泵行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年全球及中国课后护理行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2023-2024学年全国初中九年级上英语人教版模拟试卷(含答案解析)
- 2023-2024学年全国初中九年级上物理人教版模拟考卷(含答案解析)
- 2024年私人建筑项目分包合同范本版
- 2024-2025学年广东省名校联盟高三上学期开学联考历史试题(解析版)
- 2023年水解弹性蛋白项目综合评估报告
- 2024年环己二酮项目综合评估报告
- 中考名著《红星照耀中国》练习题
- 幼儿园户外自主游戏
- 浙教版劳动教育二年级上册项目三 任务二废旧物品巧利用教学课件含微课视频
- 辽宁省沈阳市四十三中学教育集团2023-2024学年七年级上学期期中地理试题
- LCM出货检验标准
- 江苏开放大学2023年秋《马克思主义基本原理 060111》形成性考核作业2-实践性环节(占过程性考核成绩的30%)参考答案
- 公司2023年消防安全资金投入计划和预算方案
- 石材厂设计方案范本
- 社会主义发展历程-PPT
- 民办职业培训机构地址变更申请表
- 冬季安全生产特点及预防措施
评论
0/150
提交评论