2024届福建省龙岩市连城县第一中学高一数学第一学期期末经典模拟试题含解析_第1页
2024届福建省龙岩市连城县第一中学高一数学第一学期期末经典模拟试题含解析_第2页
2024届福建省龙岩市连城县第一中学高一数学第一学期期末经典模拟试题含解析_第3页
2024届福建省龙岩市连城县第一中学高一数学第一学期期末经典模拟试题含解析_第4页
2024届福建省龙岩市连城县第一中学高一数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届福建省龙岩市连城县第一中学高一数学第一学期期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.下列命题中不正确的是()A.一组数据1,2,3,3,4,5的众数大于中位数B.数据6,5,4,3,3,3,2,2,2,1的分位数为5C.若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙D.为调查学生每天平均阅读时间,某中学从在校学生中,利用分层抽样的方法抽取初中生20人,高中生10人.经调查,这20名初中生每天平均阅读时间为60分钟,这10名高中生每天平均阅读时间为90分钟,那么被抽中的30名学生每天平均阅读时间为70分钟2.与直线垂直,且在轴上的截距为-2的直线方程为()A. B.C. D.3.函数的图象大致()A. B.C. D.4.已知,则的值为()A.-4 B.C. D.45.已知函数的图象的对称轴为直线,则()A. B.C. D.6.若函数与的图象关于直线对称,则的单调递增区间是()A. B.C. D.7.若都是锐角,且,,则A. B.C.或 D.或8.一半径为2m的水轮,水轮圆心O距离水面1m;已知水轮按逆时针做匀速转动,每3秒转一圈,且当水轮上点P从水中浮现时(图中点)开始计算时间.如图所示,建立直角坐标系,将点P距离水面的高度h(单位:m)表示为时间t(单位:s)的函数,记,则()A.0 B.1C.3 D.49.已知是定义在上的奇函数,且当时,,那么A. B.C. D.10.化学上用溶液中氢离子物质的量浓度的常用对数值的相反数表示溶液的,例如氢离子物质的量浓度为的溶液,因为,所以该溶液的是1.0.现有分别为3和4的甲乙两份溶液,将甲溶液与乙溶液混合,假设混合后两份溶液不发生化学反应且体积变化忽略不计,则混合溶液的约为()(精确到0.1,参考数据:.)A.3.2 B.3.3C.3.4 D.3.811.若是三角形的一个内角,且,则三角形的形状为()A.钝角三角形 B.锐角三角形C.直角三角形 D.无法确定12.在特定条件下,篮球赛中进攻球员投球后,篮球的运行轨迹是开口向下的抛物线的一部分.“盖帽”是一种常见的防守手段,防守队员在篮球上升阶段将球拦截即为“盖帽”,而防守队员在篮球下降阶段将球拦截则属“违规”.对于某次投篮而言,如果忽略其他因素的影响,篮球处于上升阶段的水平距离越长,则被“盖帽”的可能性越大.收集几次篮球比赛的数据之后,某球员投篮可以简化为下述数学模型:如图所示,该球员的投篮出手点为P,篮框中心点为Q,他可以选择让篮球在运行途中经过A,B,C,D四个点中的某一点并命中Q,忽略其他因素的影响,那么被“盖帽”的可能性最大的线路是()A.P→A→Q B.P→B→QC.P→C→Q D.P→D→Q二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知,,,则___________.14.函数的定义域为_________15.已知函数(且)过定点P,且P点在幂函数的图象上,则的值为_________16.若函数的定义域为R,则实数m的取值范围是______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知幂函数的图象关于轴对称,集合.(1)求的值;(2)当时,的值域为集合,若是成立的充分不必要条件,求实数的取值范围.18.已知,计算下列各式的值.(1);(2).19.已知函数.(1)当函数取得最大值时,求自变量x的集合;(2)完成下表,并在平面直角坐标系内作出函数在的图象.x0y20.在直三棱柱ABC﹣A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点,(Ⅰ)求证:A1C1⊥BC1;(Ⅱ)求证:AC1∥平面CDB121.首届世界低碳经济大会在南昌召开,本届大会以“节能减排,绿色生态”为主题.某单位在国家科研部门的支持下进行技术攻关,采取了新工艺,把二氧化碳转化为一种可利用的化工产品.已知该单位每月的处理量最少为400吨,最多为600吨,月处理成本(元)与月处理量(吨)之间的函数关系可近似的表示为,且处理每吨二氧化碳得到可利用的化工产品价值为100元.(1)该单位每月处理量为多少吨时,才能使每吨平均处理成本最低?(2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则需要国家至少补贴多少元才能使单位不亏损?22.已知全集,集合,集合(1)若集合中只有一个元素,求的值;(2)若,求

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】由中位数以及众数判断A;由百分位数的定义计算判断B;计算乙组数据的方差判断C;计算被抽中的30名学生每天平均阅读时间从而判断D.【详解】对于A,中位数为和众数相等,故A错误;对于B,将该组数据从小到大排列为,,则该组数据的分位数为5,故B正确;对于C,乙组数据,方差为,则这两组数据中较稳定的是乙,故C正确;对于D,被抽中的30名学生每天平均阅读时间为,故D正确;故选:A2、A【解析】先求出直线的斜率,再利用直线的点斜式方程求解.【详解】由题得所求直线的斜率为,∴所求直线方程为,整理为故选:A【点睛】方法点睛:求直线的方程,常用的方法:待定系数法,先定式(从直线的五种形式中选择一种作为直线的方程),后定量(求出直线方程中的待定系数).3、A【解析】根据对数函数的图象直接得出.【详解】因为,根据对数函数的图象可得A正确.故选:A.4、A【解析】由题,解得.故选A.5、A【解析】根据二次函数的图像的开口向上,对称轴为,可得,且函数在上递增,再根据函数的对称性以及单调性即可求解.【详解】二次函数的图像的开口向上,对称轴为,且函数在上递增,根据二次函数的对称性可知,又,所以,故选:A【点睛】本题考查了二次函数的单调性以及对称性比较函数值的大小,属于基础题.6、C【解析】根据题意得,,进而根据复合函数的单调性求解即可.【详解】解:因为函数与的图象关于直线对称,所以,,因为的解集为,即函数的定义域为由于函数在上单调递减,在上单调递减,上单调递增,所以上单调递增,在上单调递减.故选:C7、A【解析】先计算出,再利用余弦的和与差公式,即可.【详解】因为都是锐角,且,所以又,所以,所以,,故选A.【点睛】本道题考查了同名三角函数关系和余弦的和与差公式,难度较大8、C【解析】根据题意设h=f(t)=Asin(ωt+φ)+k,求出φ、A、T和k、ω的值,写出函数解析式,计算f(t)+f(t+1)+f(t+2)的值【详解】根据题意,设h=f(t)=Asin(ωt+φ)+k,(φ<0),则A=2,k=1,因为T=3,所以ω,所以h=2sin(t+φ)+1,又因为t=0时,h=0,所以0=2sinφ+1,所以sinφ,又因为φ<0,所以φ,所以h=f(t)=2sin(t)+1;所以f(t)sint﹣cost+1,f(t+1)=2sin(t)+1=2cost+1,f(t+2)=2sin(t)+1sint﹣cost+1,所以f(t)+f(t+1)+f(t+2)=3故选:C9、C【解析】由题意得,,故,故选C考点:分段函数的应用.10、C【解析】求出混合后溶液的浓度,再转化为pH【详解】由题意pH为时,氢离子物质的量浓度为,混合后溶液中氢离子物质的量浓度为,pH为故选:C11、A【解析】已知式平方后可判断为正判断的正负,从而判断三角形形状【详解】解:∵,∴,∵是三角形的一个内角,则,∴,∴为钝角,∴这个三角形为钝角三角形.故选:A12、B【解析】定性分析即可得到答案【详解】B、D两点,横坐标相同,而D点的纵坐标大于B点的纵坐标,显然,B点上升阶段的水平距离长;A、B两点,纵坐标相同,而A点的横坐标小于B点的横坐标,等经过A点的篮球运行到与B点横坐标相同时,显然在B点上方,故B点上升阶段的水平距离长;同理可知C点路线优于A点路线,综上:P→B→Q是被“盖帽”的可能性最大的线路.故选:B二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】由已知条件结合所给角的范围求出、,再将展开即可求解【详解】因为,所以,又因为,所以,所以,因为,,所以,因为,所以,所以,故答案为:.【点睛】关键点点睛:本题解题的关键点是由已知角的三角函数值的符号确定角的范围进而可求角的正弦或余弦,将所求的角用已知角表示即.14、【解析】根据被开放式大于等于零和对数有意义,解对数不等式得到结果即可.【详解】∵函数∴x>0且,∴∴函数的定义域为故答案为【点睛】本题考查了根据函数的解析式求定义域的应用问题,是基础题目15、9【解析】由指数函数的性质易得函数过定点,再由幂函数过该定点求解析式,进而可求.【详解】由知:函数过定点,若,则,即,∴,故.故答案为:9.16、【解析】由题意得到时,恒成立,然后根据当和时,进行分类讨论即可求出结果.详解】依题意,当时,恒成立当时,,符合题意;当时,则,即解得,综上,实数m的取值范围是,故答案:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)【解析】(1)根据幂函数的定义可得,求出的值,再检验即可得出答案.(2)先求出函数的值域,即得出集合,然后由题意知,根据集合的包含关系得到不等式组,从而求出答案.【小问1详解】由幂函数定义,知,解得或,当时,的图象不关于轴对称,舍去,当时,的图象关于轴对称,因此.【小问2详解】当时,的值域为,则集合,由题意知,得,解得.18、(1);(2).【解析】(1)将分子分母同除以,再将代入,得到要求式子的值(2)先将变形为,再将分子分母同除以,求得要求式子值【详解】∵,∴∴(1)将分子分母同除以,得到;(2)【点睛】本题主要考查同角三角函数的基本关系的应用,属于基础题19、(1)(2)答案见解析【解析】(1)由三角恒等变换求出解析式,再求得最大值时的x的集合,(2)由五点法作图,列出表格,并画图即可.【小问1详解】令,函数取得最大值,解得,所以此时x集合为.【小问2详解】表格如下:x0y11作图如下,20、(1)见解析(2)见解析【解析】(1)要证线线垂直,转证平面,(2)要证AC1∥平面CDB1,转证//即可.试题解析:证明(法一:故有,A.法二:;由直三棱柱;;平面;平面,平面,平面,(连接相交于点O,连OD,易知//,平面,平面,故//平面.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.21、(1)400吨;(2)不获利,需要国家每个月至少补贴40000元才能不亏损.【解析】(1)由题设平均每吨二氧化碳的处理成本为,应用基本不等式求其最小值,注意等号成立条件.(2)根据获利,结合二次函数的性质判断是否获利,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论