2023-2024学年浙江宁波市高一数学第一学期期末质量跟踪监视试题含解析_第1页
2023-2024学年浙江宁波市高一数学第一学期期末质量跟踪监视试题含解析_第2页
2023-2024学年浙江宁波市高一数学第一学期期末质量跟踪监视试题含解析_第3页
2023-2024学年浙江宁波市高一数学第一学期期末质量跟踪监视试题含解析_第4页
2023-2024学年浙江宁波市高一数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年浙江宁波市高一数学第一学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.要得到的图像,只需将函数的图像()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位2.下列每组函数是同一函数的是()A. B.C. D.3.已知全集,集合,,则()A. B.C D.4.直线与圆相交于两点,若,则的取值范围是A. B.C. D.5.设全集,集合,则()A. B.C. D.6.若偶函数在区间上是减函数,是锐角三角形的两个内角,且,则下列不等式中正确的是()A. B.C. D.7.“不等式在上恒成立”的一个必要不充分条件是()A. B.C. D.8.用b,表示a,b,c三个数中的最小值设函数,则函数的最大值为A.4 B.5C.6 D.79.如图的曲线就像横放的葫芦的轴截面的边缘线,我们叫葫芦曲线(也像湖面上高低起伏的小岛在水中的倒影与自身形成的图形,也可以形象地称它为倒影曲线),它对应的方程为(其中记为不超过的最大整数),且过点,若葫芦曲线上一点到轴的距离为,则点到轴的距离为()A. B.C. D.10.已知是空间中两直线,是空间中的一个平面,则下列命题正确的是()A.已知,若,则 B.已知,若,则C.已知,若,则 D.已知,若,则11.函数的图像与函数的图像所有交点的横坐标之和等于A2 B.4C.6 D.812.定义在上的奇函数满足,且当时,,则()A. B.2C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数的图象关于原点对称,则__________14.函数的图像恒过定点___________15.已知a∈R,不等式的解集为P,且-1∈P,则a的取值范围是____________.16.如果函数仅有一个零点,则实数的值为______三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设集合,.(1)若,求;(2)若,求实数的取值集合.18.已知函数为偶函数,当时,,(a为常数).(1)当x<0时,求的解析式:(2)设函数在[0,5]上的最大值为,求的表达式;(3)对于(2)中的,试求满足的所有实数成的取值集合.19.已知扇形的周长为30(1)若该扇形的半径为10,求该扇形的圆心角,弧长及面积;(2)求该扇形面积的最大值及此时扇形的半径.20.降噪耳机主要有主动降噪耳机和被动降噪耳机两种.其中主动降噪耳机的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的反向声波来抵消噪声(如图所示).已知某噪声的声波曲线是,其中的振幅为2,且经过点.(1)求该噪声声波曲线的解析式以及降噪芯片生成的降噪声波曲线的解析式;(2)将函数图象上各点的横坐标变为原来的倍,纵坐标不变得到函数的图象.若锐角满足,求的值.21.设,函数.(1)当时,写出的单调区间(不用写出求解过程);(2)若有两个零点,求的取值范围.22.已知函数,其中向量,,.(1)求函数的最大值;(2)求函数的单调递增区间.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】化简函数,即可判断.【详解】,需将函数的图象向左平移个单位.故选:A.2、C【解析】依次判断每组函数的定义域和对应法则是否相同,可得选项.【详解】A.的定义域为,的定义城为,定义域不同,故A错误;B.的定义域为,的定义域为,定义域不同,故B错误;C.与的定义域都为,,对应法则相同,故C正确;D.的定义域为,的定义域为,定义域不同,故D错误;故选:C【点睛】易错点睛:本题考查判断两个函数是否是同一函数,判断时,注意考虑函数的定义域和对应法则是否完全相同,属于基础题.3、C【解析】根据集合补集和交集运算方法计算即可.【详解】表示整数集Z里面去掉这四个整数后构成的集合,∴.故选:C.4、C【解析】圆,即.直线与圆相交于两点,若,设圆心到直线距离.则,解得.即,解得故选C.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小5、A【解析】根据补集定义计算【详解】因为集合,又因为全集,所以,.故选:A.【点睛】本题考查补集运算,属于简单题6、C【解析】根据,可得,根据的单调性,即可求得结果.【详解】因为是锐角三角形的两个内角,故可得,即,又因为,故可得;是偶函数,且在单调递减,故可得在单调递增,故.故选:C.【点睛】本题考查由函数奇偶性判断函数的单调性,涉及余弦函数的单调性,属综合中档题.7、C【解析】先计算已知条件的等价范围,再利用充分条件和必要条件的定义逐一判断即可.【详解】因为“不等式在上恒成立”,所以当时,原不等式为在上不是恒成立的,所以,所以“不等式在上恒成立”,等价于,解得.A选项是充要条件,不成立;B选项中,不可推导出,B不成立;C选项中,可推导,且不可推导,故是的必要不充分条件,正确;D选项中,可推导,且不可推导,故是的充分不必要条件,D不正确.故选:C.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含8、B【解析】在同一坐标系内画出三个函数,,的图象,以此确定出函数图象,观察最大值的位置,通过求函数值,解出最大值【详解】如图所示:则的最大值为与交点的纵坐标,由,得即当时,故选B【点睛】本题考查了函数的概念、图象、最值问题利用了数形结合的方法关键是通过题意得出的简图9、C【解析】先根据点在曲线上求出,然后根据即可求得的值【详解】点在曲线上,可得:化简可得:可得:()解得:()若葫芦曲线上一点到轴的距离为,则等价于则有:可得:故选:C10、D【解析】A.n和m的方向无法确定,不正确;B.要得到,需要n垂直于平面内两条相交直线,不正确;C.直线n有可能在平面内,不正确;D.平行于平面的垂线的直线与此平面垂直,正确.【详解】A.一条直线与一个平面平行,直线的方向无法确定,所以不一定正确;B.一条直线与平面内两条相交直线垂直,则直线垂直于平面,无法表示直线n垂直于平面内两条相交直线,所以不一定正确;C.直线n有可能在平面内,所以不一定正确;D.,则直线n与m的方向相同,,则,正确;故选D【点睛】本题考查了直线与平面的位置关系的判断,遇到不正确的命题画图找出反例即可.本题属于基础题.11、D【解析】由于函数与函数均关于点成中心对称,结合图形以点为中心两函数共有个交点,则有,同理有,所以所有交点横坐标之和为.故正确答案为D.考点:1.函数的对称性;2.数形结合法的应用.12、D【解析】根据题意,由,分析可得,即可得函数的周期为4,则有,由函数的解析式以及奇偶性可得的值,即可得答案【详解】解:根据题意,函数满足,即,则函数的周期为4,所以又由函数为奇函数,则,又由当,时,,则;则有;故选:【点睛】本题考查函数奇偶性、周期性的应用,注意分析得到函数的周期,属于中档题二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】根据余弦型函数的对称性可得出结果.【详解】函数的图象关于原点对称,则.故答案为:.14、【解析】根据指数函数过定点,结合函数图像平移变换,即可得过的定点.【详解】因为指数函数(,且)过定点是将向左平移2个单位得到所以过定点.故答案为:.15、【解析】把代入不等式即可求解.【详解】因为,故,解得:,所以a的取值范围是.故答案为:16、【解析】利用即可得出.【详解】函数仅有一个零点,即方程只有1个根,,解得.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】易得.(1)由;(2),然后利用分类讨论思想对、和分三种情况进行讨论.试题解析:集合(1)若,则,则(2),∴,当,即时,成立;当,即时,(i)当时,,要使得,,只要解得,所以的值不存在;(ii)当时,,要使得,只要解得综上,的取值集合是考点:集合的基本运算.18、(1)f(x)=x2-2ax+1;(2);(3){m|或}【解析】(1)设x<0,则-x>0,所以f(-x)=(-x)2+2a(-x)+1=x2-2ax+1,再根据函数的奇偶性化简即得函数的解析式.(2)对a分两种情况讨论,利用二次函数的图像和性质即得的表达式.(3)由题得或,解不等式组即得解.【详解】(1)设x<0,则-x>0,所以f(-x)=(-x)2+2a(-x)+1=x2-2ax+1.又因为f(x)为偶函数,所以f(-x)=f(x),所以当x<0时,f(x)=x2-2ax+1.(2)当x[0,5],f(x)=x2+2ax+1,对称轴x=-a,①当-a≥,即a≤-时,g(a)=f(0)=1;②当-a<,即a>-时,g(a)=f(5)=10a+26综合以上.(3)由(2)知,当a≤-时,g(a)为常函数,当a>-时,g(a)为一次函数且为增函数因为g(8m)=g(),所以有或,解得或,即m的取值集合为{m|或}【点睛】本题主要考查奇偶函数的解析式的求法,考查函数的最值的求法,考查函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.19、(1),,;(2),.【解析】(1)利用弧长公式,扇形面积公式即得;(2)由题可得,然后利用基本不等式即求.【小问1详解】由题知扇形的半径,扇形的周长为30,∴,∴,,.【小问2详解】设扇形的圆心角,弧长,半径为,则,∴,∴当且仅当,即取等号,所以该扇形面积的最大值为,此时扇形的半径为.20、(1),(2)【解析】(1)利用函数的振幅求得,代入求得的值,从而求得函数,利用对称性求得函数;(2)利用三角函数图像变换求得,由得,利用同角三角函数的基本关系式及两角和与差的三角公式求得结果.【小问1详解】解:由振幅为2知,,代入有,,而,而与关于轴对称,【小问2详解】由已知,,,而,故,.21、(1)增区间是,减区间是;(2)【解析】(1)根据函数的图象即可写出;(2)根据函数零点的定义结合分类讨论思想即可求出小问1详解】的增区间是,减区间是【小问2详解】由得;由得或,当时,得或,所以1是的零点,①当时,则都不是的零点,故只有一个零点;②当时,即时,为使有两个零点,则,解得,此时的两个零点为.当时,得,所以1不是的零点,为使有两个零点,则,解得,此时的两个零点为,所以.综上,当或时,即的取值范围为,有两个零点22、见解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论