版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省名校数学高一上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知圆锥的侧面积展开图是一个半圆,则其母线与底面半径之比为A.1 B.C. D.22.设集合,,若对于函数,其定义域为,值域为,则这个函数的图象可能是()A. B.C. D.3.已知a>0,那么2+3a+4A.23 B.C.2+23 D.4.已知m,n表示两条不同直线,表示平面,下列说法正确的是A.若则 B.若,,则C.若,,则 D.若,,则5.已知函数,若函数恰有两个零点,则实数的取值范围是A. B.C. D.6.在人类用智慧架设的无数座从已知通向未知的金桥中,用二分法求方程的近似解是其中璀璨的一座.已知为锐角的内角,满足,则()A. B.C. D.7.已知函数,则下列结论正确的是()A.B.的值域为C.在上单调递减D.的图象关于点对称8.如图,网格纸的各小格都是正方形(边长为1),粗实线画出的是一个凸多面体的三视图(两个矩形,一个直角三角形),则这个几何体的表面积为()A. B.C. D.9.下列各选项中的两个函数的图象关于y轴对称的是()A.与 B.与C.与 D.与10.甲:“x是第一象限的角”,乙:“是增函数”,则甲是乙的()A充分但不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.某公司在甲、乙两地销售同一种农产品,利润(单位:万元)分别为,,其中x为销售量(单位:吨),若该公司在这两地共销售10吨农产品,则能获得的最大利润为______万元.12.直线被圆截得弦长的最小值为______.13.我国古代数学名著《九章算术》中将底面为矩形且有一侧棱垂直于底面的四棱锥称为“阳马”,现有一“阳马”如图所示,平面,,,,则该“阳马”外接球的表面积为________.14.化简:________.15.若函数部分图象如图所示,则此函数的解析式为______.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知函数,.(1)求的最小正周期和最大值;(2)设,求函数的单调区间.17.计算:(1);(2)已知,求.18.近年来,我国在航天领域取得了巨大成就,得益于我国先进的运载火箭技术.据了解,在不考虑空气阻力和地球引力的理想状态下,可以用公式计算火箭的最大速度v(单位:m/s).其中(单位m/s)是喷流相对速度,m(单位:kg)是火箭(除推进剂外)的质量,M(单位:kg)是推进剂与火箭质量的总和,称为“总质比”,已知A型火箭的喷流相对速度为2000m/s参考数据:,(1)当总质比为230时,利用给出的参考数据求A型火箭的最大速度;(2)经过材料更新和技术改进后,A型火箭的喷流相对速度提高到了原来的1.5倍,总质比变为原来的,若要使火箭的最大速度增加500m/s,记此时在材料更新和技术改进前的总质比为T,求不小于T的最小整数?19.已知的一条内角平分线的方程为,其中,(1)求顶点的坐标;(2)求的面积20.设函数,将该函数的图象向左平移个单位长度后得到函数的图象,函数的图象关于y轴对称.(1)求的值,并在给定的坐标系内,用“五点法”列表并画出函数在一个周期内的图象;(2)求函数的单调递增区间;(3)设关于x的方程在区间上有两个不相等的实数根,求实数m的取值范围.21.已知向量满足,.(1)若的夹角为,求;(2)若,求与的夹角.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】圆锥的侧面展开图为扇形,根据扇形的弧长即为圆锥的底面圆的周长可得母线与底面圆半径间的关系【详解】设圆锥的母线长为,底面圆的半径为,由已知可得,所以,所以,即圆锥的母线与底面半径之比为2.故选D【点睛】解答本题时要注意空间图形和平面图形间的转化以及转化过程中的等量关系,解题的关键是根据扇形的弧长等于圆锥底面圆的周长得到等量关系,属于基础题2、D【解析】利用函数的概念逐一判断即可.【详解】对于A,函数的定义域为,不满足题意,故A不正确;对于B,一个自变量对应多个值,不符合函数的概念,故B不正确;对于C,函数的值域为,不符合题意,故C不正确;对于D,函数的定义域为,值域为,满足题意,故D正确.故选:D【点睛】本题考查了函数的概念以及函数的定义域、值域,考查了基本知识的掌握情况,理解函数的概念是解题的关键,属于基础题.3、D【解析】利用基本不等式求解.【详解】因为a>0,所以2+3a+4当且仅当3a=4a,即故选:D4、B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B正确.考点:空间点线面位置关系5、A【解析】因为,且各段单调,所以实数的取值范围是,选A.点睛:已知函数零点求参数的范围的常用方法,(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决.(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,作出函数的图象,然后数形结合求解6、C【解析】设设,则在单调递增,再利用零点存在定理即可判断函数的零点所在的区间,也即是方程的根所在的区间.【详解】因为为锐角的内角,满足,设,则在单调递增,,在取,得,,因为,所以的零点位于区间,即满足的角,故选:C【点睛】关键点点睛:本题解题的关键点是令,根据零点存在定理判断函数的零点所在的区间.7、C【解析】利用分段函数化简函数解析式,再利用函数图像和性质,从而得出结论.【详解】故函数的周期为,即,故排除A,显然函数的值域为,故排除B,在上,函数为单调递减,故C正确,根据函数的图像特征,可知图像不关于点对称,故排除D.故选:C.【点睛】本题解题时主要利用分段函数化简函数的解析式,在化简的过程中注意函数的定义域,以及充分利用函数的图像和性质解题.8、B【解析】根据三视图的法则:长对正,高平齐,宽相等;可得几何体如右图所示,这是一个三棱柱.表面积为:故答案为B.9、A【解析】根据题意,逐一分析各选项中两个函数的对称性,再判断作答.【详解】对于A,点是函数图象上任意一点,显然在的图象上,而点与关于y轴对称,则与的图象关于y轴对称,A正确;对于B,点是函数图象上任意一点,显然在的图象上,而点与关于原点对称,则与的图象关于原点对称,B不正确;对于C,点是函数图象上任意一点,显然在的图象上,而点与关于x轴对称,则与的图象关于x轴对称,C不正确;对于D,点是函数图象上任意一点,显然在的图象上,而点与关于直线y=x对称,则与的图象关于直线y=x对称,D不正确.故选:A10、D【解析】由正弦函数的单调性结合充分必要条件的定义判定得解【详解】由x是第一象限的角,不能得到是增函数;反之,由是增函数,x也不一定是第一象限角故甲是乙的既不充分又不必要条件故选D【点睛】本题考查充分必要条件的判定,考查正弦函数的单调性,是基础题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、34【解析】设公司在甲地销售农产品吨,则在乙地销售农产品吨,根据利润函数表示出利润之和,利用配方法求出函数的最值即可【详解】设公司在甲地销售农产品()吨,则在乙地销售农产品吨,,利润为,又且故当时,能获得的最大利润为34万元故答案为:34.12、【解析】先求直线所过定点,根据几何关系求解【详解】,由解得所以直线过定点A(1,1),圆心C(0,0),由几何关系知当AC与直线垂直时弦长最小.弦长最小值为.故答案为:13、【解析】以,,为棱作长方体,长方体的对角线即为外接球的直径,从而求出外接球的半径,进而求出外接球的表面积.【详解】由题意,以,,为棱作长方体,长方体的对角线即为外接球的直径,设外接球的半径为,则故.故答案为:【点睛】本题考查了多面体外接球问题以及球的表面积公式,属于中档题.14、-1【解析】原式)(.故答案为【点睛】本题的关键点有:先切化弦,再通分;利用辅助角公式化简;同角互化.15、.【解析】由周期公式可得,代入点解三角方程可得值,进而可得解析式.【详解】由题意,周期,解得,所以函数,又图象过点,所以,得,又,所以,故函数的解析式为.故答案为:.【点睛】本题考查三角函数解析式的求解,涉及系数的意义,属于基础题.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)最小正周期为,最大值.(2)单调减区间为,单调增区间为【解析】(1)利用三角恒等变换化简函数解析式为,利用正弦型函数的周期公式以及正弦函数的有界性可求得结果;(2)求得,利用余弦型函数的基本性质可求得函数的增区间和减区间.小问1详解】解:.所以,的最小正周期.当时,取得最大值【小问2详解】解:由(1)知,又,由,解得,所以,函数的单调增区间为.由,解得.所以,函数的单调减区间为.17、(1);(2).【解析】(1)根据对数的运算法则和对数恒等式,即可求解;(2)根据同角三角函数关系,由已知可得,代入所求式子,即可求解.【详解】(1)原式;(2)∵∴∴.18、(1)m/s(2)45【解析】(1)运用代入法直接求解即可;(2)根据题意列出不等式,结合对数的运算性质和已知题中所给的参考数据进行求解即可.【小问1详解】当总质比为230时,,即A型火箭的最大速度为.【小问2详解】A型火箭的喷流相对速度提高到了原来的1.5倍,所以A型火箭的喷流相对速度为,总质比为,由题意得:因为,所以,即,所以不小于T的最小整数为4519、(1)点的坐标为.(2)24【解析】(1)先根据中点坐标公式以及直线垂直斜率的积等于列方程组求出点关于直线的对称点的坐标,根据两点式或点斜式可得直线的方程,与角平分线的方程联立可得顶点的坐标;(2)根据两点间的距离公式可得的值,再利用点到直线距离公式可得到直线:的距离,由三角形面积公式可得结果.试题解析:(1)由题意可得,点关于直线的对称点在直线上,则有解得,,即,由和,得直线的方程为,由得顶点的坐标为(2),到直线:的距离,故的面积为20、(1),图象见解析;(2)(3)【解析】(1)化简解析式,通过三角函数图象变换求得,结合关于轴对称求得,利用五点法作图即可;(2)利用整体代入法求得的单调递增区间.(3)化简方程,利用换元法,结合一元二次方程根的分布求得的取值范围.【小问1详解】.所以,将该函数的图象向左平移个单位后得到函数,则,该函数的图象关于轴对称,可知该函数为偶函数,故,,解得,.因为,所以得到.所以函数,列表:000作图如下:【小问
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房地产经纪操作实务-《房地产经纪操作实务》模拟试卷1
- 年度财务状况及展望模板
- 《论语新解》读书报告
- 人教版四年级数学上册寒假作业(十六)(含答案)
- 四川省自贡市富顺县西区九年制学校(富顺县安和实验学校)2024-2025学年上学期九年级期中考试物理试卷(含答案)
- 二零二五年度立体广告牌匾制作与安装协议3篇
- 二零二五年建筑工程项目管理实训教材编写与出版合同3篇
- 二零二五年度高速卷帘门安装与性能检测合同2篇
- 二零二五年度隗凝国际贸易合同3篇
- 2024年ESG投资发展创新白皮书
- 【市质检】泉州市2025届高中毕业班质量监测(二) 语文试卷(含官方答案)
- 《小学教育中家校合作存在的问题及完善对策研究》7200字(论文)
- 申请行政复议的申请书范文模板
- 药品省区经理管理培训
- DB32T 1589-2013 苏式日光温室(钢骨架)通 用技术要求
- 影视动画设计与制作合同
- 一氧化碳安全培训
- 2023学年广东省深圳实验学校初中部九年级(下)开学语文试卷
- 专项8 非连续性文本阅读- 2022-2023学年五年级语文下册期末专项练习
- 新班主任教师岗前培训
- 安徽省阜阳市2022-2023学年高三上学期期末考试 数学试题 附答案
评论
0/150
提交评论