版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省蚌埠市高一上数学期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知a,b,c∈R,那么下列命题中正确的是()A.若a>b,则ac2>bc2C.若a>b,ab<0,则1a>1b D.若a2.若圆上有且只有两个点到直线的距离等于1,则半径r的取值范围是A.(4,6) B.[4,6]C.(4,5) D.(4,5]3.函数的部分图象是()A. B.C. D.4.已知,函数在上递减,则的取值范围为()A. B.C. D.5.已知,,,则的边上的高线所在的直线方程为()A. B.C. D.6.已知函数f(x)=若f(f(0))=4a,则实数a等于A. B.C.2 D.97.一个球的表面积是,那么这个球的体积为A. B.C. D.8.设,,,则的大小顺序是A. B.C. D.9.为了得到函数的图象,只需将的图象上的所有点A.横坐标伸长2倍,再向上平移1个单位长度B.横坐标缩短倍,再向上平移1个单位长度C.横坐标伸长2倍,再向下平移1个单位长度D.横坐标缩短倍,再向下平移1个单位长度10.圆与圆的位置关系是()A.内含 B.内切C.相交 D.外切11.已知函数的定义域与值域均为,则()A. B.C. D.112.在中,,则等于A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知则_______.14.若数据的方差为3,则数据的方差为__________15.已知幂函数的图象过点,则______.16.《九章算术》中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马.已知阳马,底面,,,,则此阳马的外接球的表面积为______.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,.(1)若的定义域为,求实数的取值范围;(2)若,函数为奇函数,且对任意,存在,使得,求实数的取值范围.18.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥底面ABCD,M,N分别是PA,BC的中点,且AD=2PD=2(1)求证:MN∥平面PCD;(2)求证:平面PAC⊥平面PBD;(3)求四棱锥P-ABCD的体积19.已知,,求下列各式的值:(1)(2)20.已知集合,,.(Ⅰ)求,;(Ⅱ)若,求实数的取值范围.21.已知函数.(1)当函数取得最大值时,求自变量x的集合;(2)完成下表,并在平面直角坐标系内作出函数在的图象.x0y22.如图所示,正方形边长为分别是边上的动点.(1)当时,设,将的面积用表示,并求出面积的最大值;(2)当周长为4时,设,.用表示,由此研究的大小是否为定值,并说明理由.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】根据不等式的性质或通过举反例,对四个选项进行分析【详解】A.若a>b,当c=0时,ac2=bB.若ac>bc,当c<0时,则C.因为ab<0,将a>b两边同除以ab,则1a>1D.若a2>b2且ab>0,当a<0b<0时,则a<b故选:C2、A【解析】由圆,可得圆心的坐标为圆心到直线的距离为:由得所以的取值范围是故答案选点睛:本题的关键是理解“圆上有且只有两个点到直线的距离等于1”,将其转化为点到直线的距离,结合题意计算求得结果3、C【解析】首先判断函数的奇偶性,即可排除AD,又,即可排除B.【详解】因为,定义域为R,关于原点对称,又,故函数为奇函数,图象关于原点对称,故排除AD;又,故排除B.故选:C.4、B【解析】求出f(x)的单调减区间A,令(,π)⊆A,解出ω的范围【详解】解:f(x)sin(ωx),令,解得x,k∈Z∵函数f(x)sin(ωx)(ω>0)在(,π)上单调递减,∴,解得ω2k,k∈Z∴当k=0时,ω故选:B【点睛】本题考查了三角函数的单调性与单调区间,考查转化能力与计算能力,属于基础题5、A【解析】先计算,得到高线的斜率,又高线过点,计算得到答案.【详解】,高线过点∴边上的高线所在的直线方程为,即.故选【点睛】本题考查了高线的计算,利用斜率相乘为是解题的关键.6、C【解析】,选C.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.7、B【解析】先求球半径,再求球体积.【详解】因为,所以,选B.【点睛】本题考查球表面积与体积,考查基本求解能力,属基础题.8、A【解析】利用对应指数函数或对数函数的单调性,分别得到其与中间值0,1的大小比较,从而判断的大小.【详解】因为底数2>1,则在R上为增函数,所以有;因为底数,则为上的减函数,所以有;因为底数,所以为上的减函数,所以有;所以,答案为A.【点睛】本题为比较大小的题型,常利用函数单调性法以及中间值法进行大小比较,属于基础题.9、B【解析】由题意利用函数y=Asin(ωx+φ)的图象变换规律,得出结论【详解】将的图象上的所有点的横坐标缩短倍(纵坐标不变),可得y=3sin2x的图象;再向上平行移动个单位长度,可得函数的图象,故选B【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,熟记变换规律是关键,属于基础题10、D【解析】根据两圆的圆心距和两半径的和与差的关系判断.【详解】因为圆与圆的圆心距为:两圆的半径之和为:,所以两圆相外切,故选:D11、A【解析】根据函数的定义域可得,,,再根据函数的值域即可得出答案.【详解】解:∵的解集为,∴方程的解为或4,则,,,∴,又因函数的值域为,∴,∴.故选:A.12、C【解析】分析:利用两角和的正切公式,求出的三角函数值,求出的大小,然后求出的值即可详解:由,则,因为位三角形的内角,所以,所以,故选C点睛:本题主要考查了两角和的正切函数的应用,解答中注意公式的灵活运用以及三角形内角定理的应用,着重考查了推理与计算能力二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】因为,所以14、12【解析】所求方差为,填15、【解析】结合幂函数定义,采用待定系数法可求得解析式,代入可得结果.【详解】为幂函数,可设,,解得:,,.故答案为:.【点睛】本题考查幂函数解析式和函数值的求解问题,关键是能够明确幂函数的定义,采用待定系数法求解函数解析式,属于基础题.16、【解析】将该几何体放入长方体中,即可求得外接球的半径,再由球的表面积公式即可得解.【详解】将该几何体放入长方体中,如图,易知该长方体的长、宽、高分别为、、,所以该几何体的外接球半径,所以该球的表面积.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)由函数的定义域为,得到恒成立,即恒成立,分类讨论,即可求解.(2)根据题意,转化为,利用单调性的定义,得到在R上单调递增,求得,得出恒成立,得出恒成立,分类讨论,即可求解.【详解】(1)由函数定义域为,即恒成立,即恒成立,当时,恒成立,因为,所以,即;当时,显然成立;当时,恒成立,因为,所以,综上可得,实数的取值范围.(2)由对任意,存在,使得,可得,设,因为,所以,同理可得,所以,所以,可得,即,所以在R上单调递增,所以,则,即恒成立,因为,所以恒成立,当时,恒成立,因为,当且仅当时等号成立,所以,所以,解得,所以;当时,显然成立;当时,恒成立,没有最大值,不合题意,综上,实数的取值范围.【点睛】利用函数求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.18、(1)见解析(2)见解析(3)【解析】(1)先证明平面MEN∥平面PCD,再由面面平行的性质证明MN∥平面PCD;(2)证明AC⊥平面PBD,即可证明平面PAC⊥平面PBD;(3)利用锥体的体积公式计算即可【详解】(1)证明:取AD的中点E,连接ME、NE,∵M、N是PA、BC的中点,∴在△PAD和正方形ABCD中,ME∥PD,NE∥CD;又∵ME∩NE=E,PD∩CD=D,∴平面MEN∥平面PCD,又MN⊂平面MNE,∴MN∥平面PCD;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,又∵PD⊥底面ABCD,∴PD⊥AC,且PD∩BD=D,∴AC⊥平面PBD,∴平面PAC⊥平面PBD;(3)∵PD⊥底面ABCD,∴PD是四棱锥P-ABCD的高,且PD=1,∴正方形ABCD的面积为S=4,∴四棱锥P-ABCD的体积为VP-ABCD=×S四边形ABCD×PD=×4×1=【点睛】本题考查了空间中的平行与垂直关系的应用问题,也考查了锥体体积计算问题,是中档题19、(1).(2)【解析】(1)利用二倍角公式和诱导公式直接求解;(2)判断出,根据,求出的值.【小问1详解】因为,所以.【小问2详解】.因为,所以,所以,所以,所以,所以20、(1)(2)或.【解析】(Ⅰ)由交并补集定义可得;(Ⅱ),说明有公共元素,由这两个集合的形式,知或即可.试题解析:(Ⅰ),,,又,;(Ⅱ)若,则需或,解得或.21、(1)(2)答案见解析【解析】(1)由三角恒等变换求出解析式,再求得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 员工离职报告(汇编15篇)
- 温泉小学作文
- 学生会各部门述职报告12篇
- 成人教育医学生自我鉴定50字
- 手机销售辞职报告(汇编15篇)
- 圣诞节主题活动方案策划
- 律师事务所实习报告范文汇编七篇
- 国际物流练习试题附答案
- 药剂练习试卷附答案
- 保命教育考试复习试题含答案
- 蛋鸡预混料培训课件
- 智能化实验室建设方案
- 福建省福州市仓山区2023-2024学年六年级上学期期末数学试卷
- 师德师风自评情况对照《新时代高校教师职业行为十项准则》
- 医疗器械安全生产培训
- 2023年电池Pack结构设计工程师年度总结及下年规划
- 《科技改善生活》主题班会教案内容
- 2022年湖南工商大学数据科学与大数据技术专业《计算机网络》科目期末试卷A(有答案)
- (完整版)18项医院核心制度:免修版模板范本
- 西北大学信息科学与技术学院
- 基于PLC的自动打铃控制器
评论
0/150
提交评论