2023-2024学年新疆库尔勒市新疆兵团第二师华山中学数学高一上期末检测模拟试题含解析_第1页
2023-2024学年新疆库尔勒市新疆兵团第二师华山中学数学高一上期末检测模拟试题含解析_第2页
2023-2024学年新疆库尔勒市新疆兵团第二师华山中学数学高一上期末检测模拟试题含解析_第3页
2023-2024学年新疆库尔勒市新疆兵团第二师华山中学数学高一上期末检测模拟试题含解析_第4页
2023-2024学年新疆库尔勒市新疆兵团第二师华山中学数学高一上期末检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年新疆库尔勒市新疆兵团第二师华山中学数学高一上期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.角的终边落在A.第一象限 B.第二象限C.第三象限 D.第四象限2.已知集合A=,B=,那么集合A∩B等于()A. B.C. D.3.在平行四边形中,,,为边的中点,,则()A.1 B.2C.3 D.44.已知,是第三象限角,则的值为()A. B.C. D.5.已知函数()的部分图象如图所示,则的值分别为A. B.C. D.6.函数f(x)图象大致为()A. B.C. D.7.函数的定义域为()A.R B.C. D.8.设,其中、是正实数,且,,则与的大小关系是()A. B.C. D.9.角的终边过点,则等于A. B.C. D.10.不等式的解集是()A. B.C. D.11.如图,在平面直角坐标系xOy中,角的顶点与原点O重合,它的始边与x轴的非负半轴重合,终边OP交单位圆O于点P,则点P的坐标为A.

,B.

C.

,D.

12.已知函数的零点在区间内,则()A.4 B.3C.2 D.1二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.函数的零点为_________________.14.函数是奇函数,则实数__________.15.在四边形ABCD中,若,且,则的面积为_______.16.已知偶函数是区间上单调递增,则满足的取值集合是__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.设,关于的二次不等式的解集为,集合,满足,求实数的取值范围.18.根据下列条件,求直线的方程(1)求与直线3x+4y+1=0平行,且过点(1,2)的直线l的方程.(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.19.如图,在四棱锥中,底面ABCD为平行四边形,,平面底面ABCD,M是棱PC上的点.(1)证明:底面;(2)若三棱锥的体积是四棱锥体积的,设,试确定的值.20.(1)若是的根,求的值(2)若,,且,,求的值21.某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取名按年龄分组:第组,第组,第组,第组,第组,得到的频率分布直方图如图所示.(1)若从第,,组中用分层抽样的方法抽取名志愿者参广场的宣传活动,应从第,,组各抽取多少名志愿者?(2)在(1)的条件下,该市决定在这名志愿者中随机抽取名志愿者介绍宣传经验,求第组志愿者有被抽中的概率.22.已知,且的最小正周期为.(1)求;(2)当时,求函数的最大值和最小值并求相应的值.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】根据角的定义判断即可【详解】,故为第一象限角,故选A【点睛】判断角的象限,将大角转化为一个周期内的角即可2、C【解析】根据集合的交运算即可求解.【详解】因为A=,B=,所以故选:C3、D【解析】以为坐标原点,建立平面直角坐标系,设,再利用平面向量的坐标运算求解即可【详解】以坐标原点,建立平面直角坐标系,设,则,,,,故,由可得,即,化简得,故,故,,故故选:D4、A【解析】利用同角三角函数的平方关系求出的值,然后利用两角差的余弦公式求出的值.【详解】为第三象限角,所以,,因此,.故选:A.【点睛】本题考查利用两角差的余弦公式求值,在利用同角三角函数基本关系求值时,要结合角的取值范围确定所求三角函数值的符号,考查计算能力,属于基础题.5、B【解析】由条件知道:均是函数的对称中心,故这两个值应该是原式子分母的根,故得到,由图像知道周期是,故,故,再根据三角函数的对称中心得到,故如果,根据,得到故答案为B点睛:根据函数的图像求解析式,一般要考虑的是图像中的特殊点,代入原式子;再就是一些常见的规律,分式型的图像一般是有渐近线的,且渐近线是分母没有意义的点;还有常用的是函数的极限值等等方法6、A【解析】根据函数图象的特征,利用奇偶性判断,再利用特殊值取舍.【详解】因为f(x)=f(x),所以f(x)是奇函数,排除B,C又因为,排除D故选:A【点睛】本题主要考查了函数的图象,还考查了理解辨析的能力,属于基础题.7、B【解析】要使函数有意义,则需要满足即可.【详解】要使函数有意义,则需要满足所以的定义域为,故选:B8、B【解析】利用基本不等式结合二次函数的基本性质可得出与的大小关系.【详解】因为、是正实数,且,则,,因此,.故选:B.9、B【解析】由三角函数的定义知,x=-1,y=2,r==,∴sinα==.10、B【解析】利用一元二次不等式的解法即得.【详解】由可得,,故不等式的解集是.故选:B.11、D【解析】直接利用任意角的三角函数的定义求得点P的坐标【详解】设,由任意角的三角函数的定义得,,点P的坐标为故选D【点睛】本题考查任意角的三角函数的定义,是基础题12、B【解析】根据零点存在性定理即可判断出零点所在的区间.【详解】因为,,所以函数在区间内有零点,所以.故选:B.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、.【解析】解方程即可.【详解】令,可得,所以函数的零点为.故答案为:.【点睛】本题主要考查求函数的零点,属基础题.14、【解析】根据给定条件利用奇函数的定义计算作答.【详解】因函数是奇函数,其定义域为R,则对,,即,整理得:,而不恒为0,于得,所以实数.故答案为:15、【解析】由向量的加减运算可得四边形为平行四边形,再由条件可得四边形为边长为4的菱形,由三角形的面积公式计算可得所求值【详解】在四边形中,,即为,即,可得四边形为平行四边形,又,可得四边形为边长为4的菱形,则的面积为正的面积,即为,故答案为:16、【解析】因为为偶函数,所以等价于,又是区间上单调递增,所以.解得.答案为:.点睛:本题属于对函数单调性应用的考查,若函数在区间上单调递增,则时,有,事实上,若,则,这与矛盾,类似地,若在区间上单调递减,则当时有;据此可以解不等式,由函数值的大小,根据单调性就可以得自变量的大小关系.本题中可以利用对称性数形结合即可.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、【解析】由题意,求出方程的两根,讨论的正负,确定二次不等式的解集A的形式,然后结合数轴列出不等式求解即可得答案.【详解】解:由题意,令,解得两根为,由此可知,当时,解集,因为,所以的充要条件是,即,解得;当时,解集,因为,所以的充要条件是,即,解得;综上,实数的取值范围为.18、(1)3x+4y-11=0(2)3x-y+2=0【解析】(1)设与直线平行的直线为,把点代入,解得即可;(2)由,解得两直线的交点坐标为,结合所求直线垂直于直线,可得所求直线斜率,利用点斜式即可得出.【详解】(1)由题意,设l的方程为3x+4y+m=0,将点(1,2)代入l的方程3+4×2+m=0,得m=-11,∴直线l的方程为3x+4y-11=0;(2)由,解得,两直线的交点坐标为,因为直线的斜率为所求直线垂直于直线,所求直线斜率,所求直线方程为,化为.【点睛】本题主要考查直线的方程,两条直线平行、垂直与斜率的关系,属于中档题.对直线位置关系的考查是热点命题方向之一,这类问题以简单题为主,主要考查两直线垂直与两直线平行两种特殊关系:在斜率存在的前提下,(1);(2).19、(1)详见解析;(2).【解析】(1)利用面面垂直的性质定理,可得平面,然后利用线面垂直的判定定理即证;(2)由题可得,进而可得,即得.【小问1详解】∵,平面底面ABCD,∴,平面底面ABCD=AD,底面ABCD,∴平面,平面,∴PD,又,∴,,∴底面;【小问2详解】设,M到底面ABCD的距离为,∵三棱锥的体积是四棱锥体积的,∴,又,,∴,故,又,所以.20、(1);(2)【解析】(1)先求出,再通过诱导公式及切化弦化简原式后再代值即可;(2)通过角的范围及已知的三角函数值求出和,再运用正弦的两角差的公式计算即可.【详解】(1)方程解得或,因为为其解,所以.则原式由于,所以原式.(2)因为,所以,又因为,所以,因为,,可得,又,可得,而.21、(1)分别抽取人,人,人;(2)【解析】(1)频率分布直方图各组频率等于各组矩形的面积,进而算出各组频数,再根据分层抽样总体及各层抽样比例相同求解;(2)列出从名志愿者中随机抽取名志愿者所有的情况,再根据古典概型概率公式求解.【详解】(1)第组的人数为,第组的人数为,第组的人数为,因为第,,组共有名志愿者,所以利用分层抽样的方法在名志愿者中抽取名志愿者,每组抽取的人数分别为:第组:;第组:;第组:.所以应从第,,组中分别抽取人,人,人.(2)设“第组的志愿者有被抽中”为事件.记第组的名志愿者为,,,第组的名志愿者为,,第组的名志愿者为,则从名志愿者中抽取名志愿者有:,,,,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论