版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省新余市第六中学高一数学第一学期期末考试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.若函数在定义域上的值域为,则()A. B.C. D.2.函数的定义域是A.(-1,2] B.[-1,2]C.(-1,2) D.[-1,2)3.设函数的部分图象如图所示,若,且,则()A. B.C. D.4.下列函数中在定义域上为减函数的是()A. B.C. D.5.如图,在中,已知为上一点,且满足,则实数值为A. B.C. D.6.已知集合,,有以下结论:①;②;③.其中错误的是()A.①③ B.②③C.①② D.①②③7.不等式的解集为()A. B.C. D.8.已知集合,,若,则的子集个数为A.14 B.15C.16 D.329.已知则()A. B.C. D.10.英国物理学家和数学家牛顿提出了物体在常温环境下温度变化的冷却模型,设物体的初始温度为,环境温度为,其中,经过后物体温度满足(其中k为正常数,与物体和空气的接触状况有关).现有一个的物体,放在的空气中冷却,后物体的温度是,则()(参考数据:)A.1.17 B.0.85C.0.65 D.0.2311.一条侧棱垂直于底面的三棱锥P﹣ABC的三视图不可能是()A.直角三角形B.等边三角形C.菱形D.顶角是90°的等腰三角形12.计算的值为A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知扇形的圆心角为,扇形的面积为,则该扇形的弧长为____________.14.已知幂函数(为常数)的图像经过点,则__________15.命题“,使”是真命题,则的取值范围是________16.如图,在正方体中,、分别是、上靠近点的三等分点,则异面直线与所成角的大小是______.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为(1)若是的中点,求异面直线与所成角的正切值(2)在棱上是否存在一点,使侧面,若存在,试确定点的位置;若不存在,说明理由18.已知,(1)求和的值(2)求以及的值19.设函数.(1)若函数的图象C过点,直线与图象C交于A,B两点,且,求a,b;(2)当,时,根据定义证明函数在区间上单调递增.20.已知A(﹣1,0),B(1,0),动点G满足GA⊥GB,记动点G的轨迹为曲线C(1)求曲线C的方程;(2)如图,点M是C上任意一点,过点(3,0)且与x轴垂直的直线为l,直线AM与l相交于点E,直线BM与l相交于点F,求证:以EF为直径的圆与x轴交于定点T,并求出点T的坐标21.(1)用篱笆围一个面积为的矩形菜园,当这个矩形的边长为多少时,所用篱笆最短?最短篱笆的长度是多少?(2)用一段长为的篱笆围成一个矩形菜园,当这个矩形的边长为多少时,菜园的面积最大?最大面积是多少?22.已知函数为R上的奇函数,其中a为常数,e是自然对数的底数.(1)求函数的解析式;(2)求函数在上的最小值,并求取最小值时x的值.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】的对称轴为,且,然后可得答案.【详解】因为的对称轴为,且所以若函数在定义域上的值域为,则故选:A2、A【解析】根据二次根式的性质求出函数的定义域即可【详解】由题意得:解得:﹣1<x≤2,故函数的定义域是(﹣1,2],故选A【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.3、C【解析】根据图像求出,由得到,代入即可求解.【详解】根据函数的部分图象,可得:A=1;因为,,结合五点法作图可得,,如果,且,结合,可得,,,故选:C4、C【解析】根据基本初等函数的单调性逐一判断各个选项即可得出答案.【详解】对于A,由函数,定义域为,且在上递增,故A不符题意;对于B,由函数,定义域为,且在上递增,故B不符题意;对于C,由函数,定义域为,且在上递减,故C符合题意;对于D,由函数,定义域为,且在上递增,故D不符题意.故选:C5、B【解析】所以,所以。故选B。6、C【解析】解出不等式,得到集合,然后逐一判断即可.【详解】由可得所以,故①错;,②错;,③对,故选:C7、D【解析】化简不等式并求解即可.【详解】将不等式变形为,解此不等式得或.因此,不等式解集为故选:D【点睛】本题考查一元二次不等式解法,考查学生计算能力,属于基础题.8、C【解析】根据集合的并集的概念得到,集合的子集个数有个,即16个故答案为C9、D【解析】先利用同角三角函数基本关系式求出和,然后利用两角和的余弦公式展开代入即可求出cos(α+β)【详解】∵∴∴,∴,∴故选:D10、D【解析】根据所给公式,将所给条件中的温度相应代入,利用对数的运算求解即可.【详解】根据题意:的物体,放在的空气中冷却,后物体的温度是,有:,所以,故,即,故选:D.11、C【解析】直接利用空间图形和三视图之间的转换的应用求出结果【详解】由于三棱锥P﹣ABC的一条侧棱垂直于底面,所以无论怎样摆放,该三视图都为三角形,不可能为菱形故选:C【点睛】本题考查三视图和几何体之间的转换,主要考查学生的空间想象能力,属于基础题12、D【解析】直接由二倍角的余弦公式,即可得解.【详解】由二倍角公式得:,故选D.【点睛】本题考查了二倍角的余弦公式,属于基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】利用扇形的面积求出扇形的半径,再带入弧长计算公式即可得出结果【详解】解:由于扇形的圆心角为,扇形的面积为,则扇形的面积,解得:,此扇形所含的弧长.故答案为:.14、3【解析】设,依题意有,故.15、【解析】可根据题意得出“,恒成立”,然后根据即可得出结果.【详解】因为命题“,使”是真命题,所以,恒成立,即恒成立,因为当时,,所以,的取值范围是,故答案为:.16、【解析】连接,可得出,证明出四边形为平行四边形,可得,可得出异面直线与所成角为或其补角,分析的形状,即可得出的大小,即可得出答案.【详解】连接、、,,,在正方体中,,,,所以,四边形为平行四边形,,所以,异面直线与所成的角为.易知为等边三角形,.故答案为:.【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)为四等分点(靠近点A);答案见解析【解析】(1)取中点,连,,则可得为二面角的平面角,为侧棱与底面所成的角,连接,则,从而可得或其补角为异面直线与所成的角,进而可求得答案;(2)延长交于,取中点,连、,由线面垂直的判定可得平面,则平面平面,再由线面垂直的判定可得平面,取的中点,可证得四边形为平行四边形,所以,从而可得侧面【详解】解:(1)取中点,连,,因为正四棱锥中,为底面正方形的中心,所以面,则为二面角的平面角,为侧棱与底面所成的角,所以,连接,则,或其补角为异面直线与所成的角,因为,,,所以平面平面,所以,(2)延长交于,取中点,连、因为,,,故平面,因平面,故平面平面,又,,故为等边三角形,所以,由平面,故,因为,所以平面,取的中点,,四边形为平行四边形,所以,平面即为AD的四等分点(靠近点A)18、(1),(2),【解析】(1)根据三角函数的基本关系式,准确运算,即可求解;(2)利用两角差的正弦公式和两角和的正切公式,准确运算,即可求解.【小问1详解】因为,根据三角函数的基本关系式,可得,又因为,所以,且.【小问2详解】由,和根据两角差的正弦公式,可得,再结合两角和的正切公式,可得19、(1),(2)证明见解析【解析】(1)由题意得,,设,,由题意得,即的两根为或,结合方程根与系数关系及,代入可求;(2),先设,利用作差法比较与的大小即可判断【小问1详解】由题意得,,设,,由题意得,即的两根为或,所以,所以,整理得,,解得,或(舍;故,;小问2详解】证明:当,时,,设,则,,,所以,所以在区间,上单调递增20、(1)x2+y2=1;(2)证明见解析,T(3+2,0)或T(3﹣2,0)【解析】(1)由可得,列出等式即可求动点的轨迹方程;(2)设出点M的坐标,我们可以得到直线AM、直线BM的方程,与直线方程联立求得点E、点F的坐标,进而得到以为直径的圆的方程,最后求出定点坐标.【详解】(1)设G(x,y)(x≠±1),因为GA⊥GB,所以,整理得C的方程为x2+y2=1(x≠±1);(2)设点M(x0,y0)(x0≠±1),且有x02+y02=1,则直线AM的方程为y,令x=3,得E(3,),直线BM的方程为y,令x=3,得F(3,),从而以EF为直径的圆方程为(x﹣3)2+(y)(y)=0,令y=0,则(x﹣3)2•0,即(x﹣3)20,又因为x02+y02=1,所以,代入可得x2﹣6x+1=0,解得x=3±2,所以定点T(3+2,0)或T(3﹣2,0)【点睛】本题考查动点的轨迹方程,考查直线与圆的方程的应用问题,属于中档题,涉及到的知识点有直线的点斜式方程,由圆上两点的坐标列出圆的方程,认真分析题意求得结果.21、(1)当这个矩形菜园是边长为的正方形时,最短篱笆的长度为;(2)当这个矩形菜园是边长为的正方形时,最大面积是.【解析】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由题意得出,利用基本不等式可求出矩形周长的最小值,由等号成立的条件可得出矩形的边长,从而可得出结论;(2)由题意得出,利用基本不等式可求出矩形面积的最大值,由等号成立的条件可得出矩形的边长,从而可得出结论.【详解】设矩形菜园的相邻两条边的长分别为、,篱笆的长度为.(1)由已知得,由,可得,所以,当且仅当时,上式等号成立.因此,当这个矩形菜园是边长为的正方形时,所用篱笆最短,最短篱笆的长度为;(2)由已知得,则,矩形菜园的面积为.由,可得,当且仅当时,上式等号成立.因此,当这个矩形菜园是边长为的正方形时,菜园的面积最大,最大面积是.【点睛】本题考查基本不等式的应用,在运用基本不等式求最值时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《威海节日习俗》课件
- 《室内设计课件》课件
- 单位管理制度集合大合集人力资源管理篇
- 单位管理制度合并选集【员工管理篇】十篇
- 单位管理制度分享汇编员工管理篇
- 单位管理制度分享大全人员管理篇十篇
- 《审计与管理》课件
- 《客房优化方案》课件
- 《诊断思路》课件
- (高频选择题50题)第2单元 社会主义制度的建立与社会主义建设的探索(解析版)
- 劳务派遣协议书(吉林省人力资源和社会保障厅制)
- 水库移民安置档案分类大纲与编号方案
- 医院安全生产风险分级管控和隐患排查治理双体系
- GA 1802.2-2022生物安全领域反恐怖防范要求第2部分:病原微生物菌(毒)种保藏中心
- 企业EHS风险管理基础智慧树知到答案章节测试2023年华东理工大学
- 健身俱乐部入场须知
- 《古兰》中文译文版
- 井下机电安装安全教育培训试题及答案
- TZJXDC 002-2022 电动摩托车和电动轻便摩托车用阀控式铅酸蓄电池
- GB/T 337.1-2002工业硝酸浓硝酸
- 《解放战争》(共48张PPT)
评论
0/150
提交评论