2024届江苏省吴江市平望中学高一数学第一学期期末学业质量监测模拟试题含解析_第1页
2024届江苏省吴江市平望中学高一数学第一学期期末学业质量监测模拟试题含解析_第2页
2024届江苏省吴江市平望中学高一数学第一学期期末学业质量监测模拟试题含解析_第3页
2024届江苏省吴江市平望中学高一数学第一学期期末学业质量监测模拟试题含解析_第4页
2024届江苏省吴江市平望中学高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省吴江市平望中学高一数学第一学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,,则下列不等式中恒成立的是()A. B.C. D.2.设a>0,b>0,化简的结果是()A. B.C. D.-3a3.我们知道,函数的图象关于原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.据此,我们可以得到函数图象的对称中心为()A. B.C. D.4.已知圆和圆,则两圆的位置关系为A.内含 B.内切C.相交 D.外切5.定义在上的奇函数,当时,,则不等式的解集为()A. B.C. D.6.已知、、是的三个内角,若,则是A.钝角三角形 B.锐角三角形C.直角三角形 D.任意三角形7.“”是的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件8.已知为正实数,且,则的最小值为()A.4 B.7C.9 D.119.满足2,的集合A的个数是A.2 B.3C.4 D.810.已知角终边经过点,且,则的值是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若f(x)为偶函数,且当x≤0时,,则不等式>的解集______.12.设函数,若函数在上的最大值为M,最小值为m,则______13.若,则实数____________.14.某种商品在第天的销售价格(单位:元)为,第x天的销售量(单位:件)为,则第14天该商品的销售收入为________元,在这30天中,该商品日销售收入的最大值为________元.15.已知,则____________.(可用对数符号作答)16.下面四个命题:①定义域上单调递增;②若锐角,满足,则;③是定义在上的偶函数,且在上是增函数,若,则;④函数的一个对称中心是;其中真命题的序号为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在长方体中,,是与的交点.求证:(1)平面;(2)平面平面.18.已知,且求的值;求的值19.已知函数.(1)求函数振幅、最小正周期、初相;(2)用“五点法”画出函数在上的图象20.已知集合,.(1)若,求实数t的取值范围;(2)若“”是“”的必要不充分条件,求实数t的取值范围21.在四面体B-ACD中,是正三角形,是直角三角形,,.(1)证明:;(2)若E是BD的中点,求二面角的大小.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】直接利用特殊值检验及其不等式的性质判断即可.【详解】对于选项A,令,,但,则A错误;对于选项B,令,,但,则B错误;对于选项C,当时,,则C错误;对于选项D,有不等式的可加性得,则D正确,故选:D.2、D【解析】由分数指数幂的运算性质可得结果.【详解】因为,,所以.故选:D.3、A【解析】依题意设函数图象的对称中心为,则为奇函数,再根据奇函数的性质得到方程组,解得即可;【详解】解:依题意设函数图象的对称中心为,由此可得为奇函数,由奇函数的性质可得,解得,则函数图象的对称中心为;故选:A4、B【解析】由于圆,即

表示以为圆心,半径等于1的圆圆,即,表示以为圆心,半径等于3的圆由于两圆的圆心距等于等于半径之差,故两个圆内切故选B5、D【解析】当时,为单调增函数,且,则的解集为,再结合为奇函数,可得答案【详解】当时,,所以在上单调递增,因为,所以当时,等价于,即,因为是定义在上的奇函数,所以时,在上单调递增,且,所以等价于,即,所以不等式的解集为故选:D6、A【解析】依题意,可知B,C中有一角为钝角,从而可得答案详解】∵A是△ABC的一个内角,∴sinA>0,又sinAcosBtanC<0,∴cosBtanC<0,∴B,C中有一角为钝角,故△ABC为钝角三角形故选A【点睛】本题考查三角形的形状判断,求得B,C中有一角为钝角是判断的关键,属于中档题7、A【解析】先看时,是否成立,即判断充分性;再看成立时,能否推出,即判断必要性,由此可得答案.【详解】当时,,即“”是的充分条件;当时,,则或,则或,即成立,推不出一定成立,故“”不是的必要条件,故选:A.8、C【解析】由,展开后利用基本不等式求最值【详解】且,∴,当且仅当,即时,等号成立∴的最小值为9故选:C9、C【解析】由条件,根据集合的子集的概念与运算,即可求解【详解】由题意,可得满足2,的集合A为:,,,2,,共4个故选C【点睛】本题主要考查了集合的定义,集合与集合的包含关系的应用,其中熟记集合的子集的概念,准确利用列举法求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题10、A【解析】由终边上的点及正切值求参数m,再根据正弦函数的定义求.【详解】由题设,,可得,所以.故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由已知条件分析在上的单调性,利用函数的奇偶性可得,再根据函数的单调性解不等式即可.【详解】f(x)为偶函数,且当x≤0时,单调递增,当时,函数单调递减,若>,f(x)为偶函数,,,同时平方并化简得,解得或,即不等式>的解集为.故答案为:【点睛】本题考查函数的奇偶性与单调性的综合应用,属于中档题.12、2【解析】令,证得为奇函数,从而可得在的最大值和最小值之和为0,进而可求出结果.【详解】设,定义域为,则,所以,即,所以为奇函数,所以在的最大值和最小值之和为0,令,则因为,所以函数的最大值为,最小值为,则,∴故答案为:2.13、5##【解析】根据题中条件,由元素与集合之间的关系,得到求解,即可得出结果.【详解】因为,所以,解得.故答案为:.14、①.448②.600【解析】销售价格与销售量相乘即得收入,对分段函数,可分段求出最大值,然后比较.【详解】由题意可得(元),即第14天该商品的销售收入为448元.销售收入,,即,.当时,,故当时,y取最大值,,当时,易知,故当时,该商品日销售收入最大,最大值为600元.故答案为:448;600.【点睛】本题考查分段函数模型的应用.根据所给函数模型列出函数解析式是基本方法.15、【解析】根据对数运算法则得到,再根据对数运算法则及三角函数弦化切进行计算.【详解】∵,∴,又,.故答案为:16、②③④【解析】由正切函数的单调性,可以判断①真假;根据正弦函数的单调性,结合诱导公式,可以判断②的真假;根据函数奇偶性与单调性的综合应用,可以判断③的真假;根据正弦型函数的对称性,我们可以判断④的真假,进而得到答案【详解】解:由正切函数的单调性可得①“在定义域上单调递增”为假命题;若锐角、满足,即,即,则,故②为真命题;若是定义在上的偶函数,且在上是增函数,则函数在上为减函数,若,则,则,故③为真命题;由函数则当时,故可得是函数的一个对称中心,故④为真命题;故答案为:②③④【点睛】本题考查的知识点是命题的真假判断与应用,函数单调性的性质,偶函数,正弦函数的对称性,是对函数性质的综合考查,熟练掌握基本初等函数的性质是解答本题的关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析.【解析】⑴连结交于点,连结,推导出,又因为平面,由此证明平面⑵推导出,,从而平面,由此证明平面平面解析:(1)连结交于点,连结,∵,∴.∴.又∵平面,平面,∴平面.(2)∵平面.∴.∵,∴∵与相交,∴平面∵平面.∴平面平面.点睛:本题考查了立体几何中的线面平行及面面垂直,在证明的过程中依据其判定定理证得结果,在证明平行中需要做辅助线,构造平行四边形或者三角形中位线证得线线平行,从而证得线面平行18、(1);(2)【解析】由.,利用同角三角函数关系式先求出,由此能求出的值利用同角三角函数关系式和诱导公式化简为,再化简为关于的齐次分式求值【详解】(1)因为.,所以,故(2)【点睛】本题考查三角函数值的求法,考查同角三角函数关系式和诱导公式等基础知识,考查运算求解能力,属于基础题型19、(1)振幅为,最小正周期为,初相为;(2)答案见解析.【解析】(1)首先利用三角恒等变换把三角函数的关系式变形为正弦型函数,利用关系式即求;(2)利用整体思想,使用“五点法”,采用列表、描点、连线画出函数的图像.【小问1详解】∵,∴振幅为,最小正周期为,初相为;【小问2详解】列表0x011+10故函数在上的图像如下图所示:20、(1)(2)【解析】(1)首先求出集合,再对与两种情况讨论,分别得到不等式,解得即可;(2)依题意可得集合,分与两种情况讨论,分别到不等式,解得即可;【小问1详解】解:由得解,所以,又若,分类讨论:当,即解得,满足题意;当,即,解得时,若满足,则必有或;解得.综上,若,则实数t的取值范围为.【小问2详解】解:由“”是“”的必要不充分条件,则集合,若,即,解得,若,即,即,则必有,解得,综上可得,,综上所述,当“”是“”的必要不充分条件时,即为所求21、(1)证明见解析(2)【解析】(1)取AC的中点F,连接DF,BF,由等腰三角形的性质,先证平面BFD,再证;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论