版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河北衡水中学数学高一上期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角2.2018年,晓文同学参加工作月工资为7000元,各种用途占比统计如下面的条形图.后来晓文同学加强了体育锻炼,目前月工资的各种用途占比统计如下面的折线图.已知目前的月就医费比刚参加工作时少200元,则目前晓文同学的月工资为A.7000 B.7500C.8500 D.95003.某几何体的三视图如图所示,则该几何体的表面积是A. B.C. D.4.如图,在中,为边上的中线,,设,若,则的值为A. B.C. D.5.一几何体的直观图如右图,下列给出的四个俯视图中正确的是()A. B.C. D.6.sin210°·cos120°的值为()A. B.C. D.7.已知△ABC的平面直观图△A′B′C′是边长为a的正三角形,那么原△ABC的面积为()A. B.C. D.8.若,则有()A.最大值 B.最小值C.最大值2 D.最小值29.设函数则A.1 B.4C.5 D.910.设、是两个非零向量,下列结论一定成立的是()A.若,则B.若,则存在实数,使得C若,则D.若存在实数,使得,则|11.已知过点和的直线与斜率为一2的直线平行,则m的值是A.-8 B.0C.2 D.1012.定义在上的函数,,若在区间上为增函数,则一定为正数的是A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数,的图像在区间上恰有三个最低点,则的取值范围为________14.在中,,,与的夹角为,则_____15.的边的长分别为,且,,,则__________.16.已知函数的图象如图所示,则函数的解析式为__________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数.(1)若函数在单调递增,求实数的取值范围;(2),,使在区间上值域为.求实数的取值范围.18.某企业生产A,B两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图①;B产品的利润与投资的算术平方根成正比,其关系如图②.(注:利润和投资单位:万元)(1)分别将A,B两种产品的利润表示为投资的函数关系式;(2)已知该企业已筹集到18万元资金,并将全部投入A,B两种产品的生产,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?19.已知函数的图象在定义域(0,+∞)上连续不断,若存在常数T>0,使得对于任意的x>0,恒成立,称函数满足性质P(T).(1)若满足性质P(2),且,求的值;(2)若,试说明至少存在两个不等的正数T1、T2,同时使得函数满足性质P(T1)和P(T2);(3)若函数满足性质P(T),求证:函数存在零点.20.已知函数的最小正周期为,函数的最大值是,最小值是.(1)求、、的值;(2)指出的单调递增区间.21.已知函数fx=2sin(1)求fx(2)若fx在区间-π622.如图在三棱锥中,分别为棱的中点,已知.求证:(1)直线平面;(2)平面平面.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】找到与终边相等的角,进而判断出是第几象限角.【详解】因为,所以角和角是终边相同的角,因为角是第二象限角,所以角是第二象限角.故选:B.2、C【解析】根据两次就医费关系列方程,解得结果.【详解】参加工作就医费为,设目前晓文同学的月工资为,则目前的就医费为,因此选C.【点睛】本题考查条形图以及折线图,考查基本分析判断与求解能力,属基础题.3、A【解析】由三视图可知几何体是一个底面为梯形的棱柱,再求几何体的表面积得解.【详解】由三视图可知几何体是一个底面为直角梯形的棱柱,梯形的上底为1,下底为2,高为2,棱柱的高为2.由题可计算得梯形的另外一个腰长为.所以该几何体的表面积=.故答案为A【点睛】本题主要考查三视图找原图,考查几何体的表面积的计算,意在考查学生对这些知识的掌握水平和空间想象分析推理能力.4、C【解析】分析:求出,,利用向量平行的性质可得结果.详解:因为所以,因为,则,有,,由可知,解得.故选点睛:本题主要考查平面向量的运算,属于中档题.向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)5、B【解析】通过几何体结合三视图的画图方法,判断选项即可【详解】解:几何体的俯视图,轮廓是矩形,几何体的上部的棱都是可见线段,所以C、D不正确;几何体的上部的棱与正视图方向垂直,所以A不正确,故选B【点睛】本题考查三视图的画法,几何体的结构特征是解题的关键6、A【解析】直接诱导公式与特殊角的三角函数求解即可.【详解】,故选:A.7、C【解析】根据直观图的面积与原图面积的关系为,计算得到答案.【详解】直观图的面积,设原图面积,则由,得.故选:C.【点睛】本题考查了平面图形的直观图的面积与原面积的关系,三角形的面积公式,属于基础题.8、D【解析】构造基本不等式即可得结果.【详解】∵,∴,∴,当且仅当,即时,等号成立,即有最小值2.故选:D.【点睛】本题主要考查通过构造基本不等式求最值,属于基础题.9、C【解析】根据题意,由函数的解析式求出与的值,相加即可得答案【详解】根据题意,函数,则,又由,则,则;故选C【点睛】本题考查对数的运算,及函数求值问题,其中解答中熟记对数的运算,以及合理利用分段函数的解析式求解是解答的关键,着重考查了推理与计算能力,属于基础题10、B【解析】利用向量共线定理、垂直数量积为0来综合判断.【详解】A:当、方向相反且时,就可成立,A错误;B:若,则、方向相反,故存在实数,使得,B正确;C:若,则说明,不一定有,C错误;D:若存在实数,使得,则,D错误.故选:B11、A【解析】由题意可知kAB==-2,所以m=-8.故选A12、A【解析】在区间上为增函数,即故选点睛:本题运用函数的单调性即计算出结果的符号问题,看似本题有点复杂,在解析式的给出时含有复合部分,只要运用函数的解析式求值,然后利用函数的单调性,做出减法运算即可判定出结果二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】直接利用正弦型函数的性质的应用和函数的单调递区间的应用求出结果【详解】解:,,根据正弦型函数图象的特点知,轴左侧有1个或2个最低点①若函数图象在轴左侧仅有1个最低点,则,解得,,,此时在轴左侧至少有2个最低点函数图象在轴左侧仅有1个最低点不符合题意;②若函数图象在轴左侧有2个最低点,则,解得,又,则,故,时,在,恰有3个最低点综上所述,故答案:14、【解析】利用平方运算可将问题转化为数量积和模长的运算,代入求得,开方得到结果.【详解】【点睛】本题考查向量模长的求解问题,关键是能够通过平方运算将问题转变为向量的数量积和模长的运算,属于常考题型.15、【解析】由正弦定理、余弦定理得答案:16、【解析】根据最大值得,再由图像得周期,从而得,根据时,取得最大值,利用整体法代入列式求解,再结合的取值范围可得.【详解】根据图像的最大值可知,,由,可得,所以,再由得,,所以,因为,所以,故函数的解析式为.故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2).【解析】(1)由对数复合函数的单调性得,即可求参数范围.(2)首先判断的单调性并确定在上的值域,结合已知易得在内有两不等实根,,应用换元法进一步转化为两个函数有两个交点求参数范围.【小问1详解】∵在单调递增,∴在单调递增,且∴,解得.【小问2详解】由,在上是减函数.所以,在上的值域为,故,整理得:,即在内有两不等实根,,令,当时,则关于的在内有两个不等实根.整理得:,即与由两个不同的交点,又,当且仅当时等号成立,则上递减,上递增,且其值域为.∴函数图象如下:∴,即.【点睛】关键点点睛:第二问,根据对数复合函数的单调性及其区间值域,将问题转化为方程在某区间内有两个不同实根,应用参变分离将问题进一步化为两个函数在某区间内有两个交点.18、(1);(2)当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约为8.5万元.【解析】⑴设出函数解析式,根据图象,即可求得答案;⑵确定总利润函数,换元,利用配方法可求最值;解析:(1)根据题意可设,则f(x)=0.25x(x≥0),g(x)=2(x≥0).(2)设B产品投入x万元,A产品投入(18-x)万元,该企业可获总利润为y万元则y=(18-x)+2,0≤x≤18令=t,t∈[0,3],则y=(-t2+8t+18)=-(t-4)2+.所以当t=4时,ymax==8.5,此时x=16,18-x=2.所以当A,B两种产品分别投入2万元、16万元时,可使该企业获得最大利润,约8.5万元.19、(1)0;(2)证明见解析;(3)证明见解析.【解析】(1)由满足性质可得恒成立,取可求,取可求,由此可求的值;(2)设满足,利用零点存在定理证明关于的方程至少有两个解,证明至少存在两个不等的正数,同时使得函数满足性质和;(3)分别讨论,,时函数的零点的存在性,由此完成证明.【小问1详解】因为满足性质,所以对于任意的x,恒成立.又因为,所以,,由可得,所以,;【小问2详解】若正数满足,等价于,记,显然,,因为,所以,,即.因为的图像连续不断,所以存,使得,因此,至少存在两个不等的正数,使得函数同时满足性质和.【小问3详解】若,则1即为零点;因为,若,则,矛盾,故,若,则,,,可得.取即可使得,又因为的图像连续不断,所以,当时,函数在上存在零点,当时,函数在上存在零点,若,则由,可得,由,可得,由,可得.取即可使得,又因为的图像连续不断,所以,当时,函数在上存在零点,当时,函数在上存在零点,综上,函数存在零点.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.20、(1)(2)【解析】(1)由可得的值,根据正弦函数可得最值,再根据最值对应关系可得方程组,解得、的值;(2)根据正弦函数单调性可得不等式,解不等式可得函数单调区间.试题解析:(1)由函数最小正周期为,得,∴.又的最大值是,最小值是,则解得(2)由(1)知,,当,即时,单调递增,∴的单调递增区间为.点睛:已知函数的图象求解析式(1).(2)由函数的周期求(3)利用“五点法”中相对应的特殊点求.21、(1)π;单调递减区间是π3+kπ,5π【解析】(1)直接利用三角函数关系式的恒等变换和正弦型函数的性质的应用求出结果(2)由(1)知fx=sin2x-π【详解】解:(1)由己知,有f=-=3所以fx的最小正周期:T=由π2得fx的单调递减区间是π(2)由(1)知fx=sin所以2x-π要使fx在区间-π6即y=sin2x-π所以2m-π6所以m的最小值为π3【点睛】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题22、(1)证明见解析;(2)证明见解析【解析】(1)本题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年四年级语文上册第七单元25倔强的小红军作业设计无答案语文S版
- 湘教版数学八年级上册《4.3 一元一次不等式的解法》听评课记录2
- 初二班主任学期总结
- 项目工程师个人工作总结
- 委托放贷款协议
- 驻场兽医聘用协议书范本
- 小吃店合伙协议书范本
- 多人股东合伙协议书范本
- 变压器租赁协议书范本
- 电力安装子项目承包合同范本
- 新外研版高中英语选择性必修1单词正序英汉互译默写本
- 自愿断绝父子关系协议书电子版
- 2023年4月自考00504艺术概论试题及答案含解析
- 美丽的大自然(教案)2023-2024学年美术一年级下册
- 2024年低压电工考试题库(试题含答案)
- 成都特色民俗课件
- 花城版音乐四下-第四课-认知音乐节奏(教案)
- 宠物医院员工手册
- 2024年高考英语读后续写高分宝典专题08读后续写肢体动作描写积累1(词-句-文)讲义
- 商业与公积金贷款政策
- 时政述评培训课件
评论
0/150
提交评论