2024届广东省深圳市龙文一对一高一数学第一学期期末学业质量监测模拟试题含解析_第1页
2024届广东省深圳市龙文一对一高一数学第一学期期末学业质量监测模拟试题含解析_第2页
2024届广东省深圳市龙文一对一高一数学第一学期期末学业质量监测模拟试题含解析_第3页
2024届广东省深圳市龙文一对一高一数学第一学期期末学业质量监测模拟试题含解析_第4页
2024届广东省深圳市龙文一对一高一数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东省深圳市龙文一对一高一数学第一学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若函数且,则该函数过的定点为()A. B.C. D.2.如图所示的是用斜二测画法画出的的直观图(图中虚线分别与轴,轴平行),则原图形的面积是()A.8 B.16C.32 D.643.设函数与的图像的交点为,则所在的区间是()A. B.C. D.4.函数与则函数所有零点的和为A.0 B.2C.4 D.85.二次函数中,,则函数的零点个数是A.个 B.个C.个 D.无法确定6.若三点在同一直线上,则实数等于A. B.11C. D.37.函数的图象如图所示,为了得到函数的图象,可以把函数的图象A.每个点的横坐标缩短到原来的(纵坐标不变),再向左平移个单位B.每个点横坐标伸长到原来的倍(纵坐标不变),再向左平移个单位C.先向左平移个单位,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)D.先向左平移个单位,再把所得各点的横坐标缩短到原来的(纵坐标不变)8.集合{0,1,2}的所有真子集的个数是A.5 B.6C.7 D.89.在正方体中,分别是的中点,则直线与平面所成角的余弦值为A. B.C. D.10.如果“,”是“”成立的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.不充分也不必要条件二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数是定义在R上的增函数,且,那么实数a的取值范围为________12.函数的值域为,则实数a的取值范围是______13.若,,三点共线,则实数的值是__________14.若角的终边经过点,则___________.15.已知函数,的图像在区间上恰有三个最低点,则的取值范围为________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知定义在上的奇函数.(1)求实数的值;(2)解关于的不等式17.已知函数(1)求函数的最小值;(2)求函数的单调递增区间18.若函数自变量的取值区间为时,函数值的取值区间恰为,就称区间为的一个“罗尔区间”.已知函数是定义在上的奇函数,当时,.(1)求的解析式;(2)求函数在内的“罗尔区间”;(3)若以函数在定义域所有“罗尔区间”上的图像作为函数的图像,是否存在实数,使集合恰含有2个元素.若存在,求出实数的取值集合;若不存在,说明理由.19.如图,三棱柱中,,,,为的中点,且.(1)求证:平面;(2)求与平面所成角的大小.20.已知.(1)化简;(2)若是第三象限角,且,求的值.21.已知函数.(1)求的值;你能发现与有什么关系?写出你的发现并加以证明:(2)试判断在区间上的单调性,并用单调性的定义证明.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】根据指数函数的图像经过定点坐标是,利用平移可得到答案.【详解】因为指数函数的图像经过定点坐标是,函数图像向右平移个单位,再向上平移个单位,得到,函数的图像过的定点.故选:.【点睛】本题主要考查的是指数函数的图像和性质,考查学生对指数函数的理解,是基础题.2、C【解析】由斜二测画法知识得原图形底和高【详解】原图形中,,边上的高为,故面积为32故选:C3、B【解析】根据零点所在区间的端点值的乘积小于零可得答案.【详解】函数与的图象的交点为,可得设,则是的零点,由,,∴,∴所在的区间是(1,2).故选:B.4、C【解析】分析:分别作与图像,根据图像以及对称轴确定零点以及零点的和.详解:分别作与图像,如图,则所有零点的和为,选C.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等5、C【解析】计算得出的符号,由此可得出结论.【详解】由已知条件可得,因此,函数的零点个数为.故选:C.6、D【解析】由题意得:解得故选7、C【解析】根据函数的图象,设可得再根据五点法作图可得故可以把函数的图象先向左平移个单位,得到的图象,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),即可得到函数的图象,故选C8、C【解析】集合{0,1,2}中有三个元素,因此其真子集个数为.故选:C.9、C【解析】设正方体的棱长为,如图,连接,它们交于,连接,则平面,而,故就是直线与平面所成的余角,又为直角三角形且,所以,,设直线与平面所成的角为,则,选C.点睛:线面角的计算往往需要先构造面的垂线,必要时还需将已知的面的垂线适当平移才能构造线面角,最后把该角放置在容易计算的三角形中计算其大小.10、A【解析】利用充分条件和必要条件的定义判断.【详解】当,时,,故充分;当时,,,故不必要,故选:A二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】利用函数单调性的定义求解即可.【详解】由已知条件得,解得,则实数的取值范围为.故答案为:.12、【解析】分,,三类,根据一次函数和二次函数的性质可解.【详解】当时,,易知此时函数的值域为;当时,二次函数图象开口向下,显然不满足题意;当时,∵函数的值域为,∴,解得或,综上,实数a的取值范围是,故答案为:.13、5【解析】,,三点共线,,即,解得,故答案为.14、【解析】根据三角函数的定义求出和的值,再由正弦的二倍角公式即可求解.【详解】因为角的终边经过点,所以,,则,所以,,所以,故答案为:.15、【解析】直接利用正弦型函数的性质的应用和函数的单调递区间的应用求出结果【详解】解:,,根据正弦型函数图象的特点知,轴左侧有1个或2个最低点①若函数图象在轴左侧仅有1个最低点,则,解得,,,此时在轴左侧至少有2个最低点函数图象在轴左侧仅有1个最低点不符合题意;②若函数图象在轴左侧有2个最低点,则,解得,又,则,故,时,在,恰有3个最低点综上所述,故答案:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)1;(2).【解析】(1)由奇函数的性质有,可求出的值,注意验证是否为奇函数.(2)根据函数的奇偶性、单调性可得,再结合对数函数的性质求解集.【小问1详解】因为是定义在上的奇函数,所以,解得,经检验是奇函数,即【小问2详解】由,得,又是定义在上的奇函数,所以,易知在上递增,所以,则,解得,所以原不等式的解集为17、(1)(2)【解析】(1)利用三角函数恒等变换对函数进行化简,根据正弦型三角函数性质求解函数的最小值即可;(2)利用正弦函数的单调性,整体代换求解函数的单调递增区间即可.【小问1详解】解析:(1),∴当时取得最小值【小问2详解】(2)由(1)得,,令,得函数的单调递增区间为18、(1);(2);(3)存在,.【解析】(1)根据为上的奇函数,得到,再由时,,设时,则代入求解.(2)设,易知在上单调递减,则,则,是方程的两个不等正根求解(3)设为的一个“罗尔区间”,且,同号,若,由(2)可得,若,同理可求,得到,再根据集合恰含有2个元素,转化为与的图象有两个交点,即方程在内恰有一个实数根,方程,在内恰有一个实数根求解..【详解】(1)因为为上的奇函数,∴,又当时,,所以当时,,所以,所以.(2)设,∵在上单调递减,∴,即,是方程的两个不等正根,∵,∴,∴在内的“罗尔区间”为.(3)设为的一个“罗尔区间”,则,∴,同号.当时,同理可求在内的“罗尔区间”为,∴,依题意,抛物线与函数的图象有两个交点时,一个交点在第一象限,一个交点在第三象限,所以应当使方程在内恰有一个实数根,且使方程,在内恰有一个实数根,由方程,即在内恰有一根,令,则,解得;由方程,即在内恰有一根,令,则,解得.综上可知,实数的取值集合为.【点睛】关键点点睛:本题关键是对“罗尔区间”的理解,特别是根据在上单调递减,得到,转化为,是方程的两个不等正根求解19、(1)证明见解析(2)【解析】(1)连结与交于点,连结,由中位线定理可得,再根据线面平行的判定定理即可证明结果;(2)方法一:根据线面垂直的判定定理,可证明平面;取的中点,易证平面,所以即所求角,再根据直棱柱的有关性质求即可得到结果;方法二:根据线面垂直的判定定理,可证明平面;取的中点,易证平面;所以即与平面所成的角,再根据直棱柱的有关性质求即可得到结果.【小问1详解】证明:如图一,连结与交于点,连结.在中,、为中点,∴.又平面,平面,∴平面.图一【小问2详解】证明:(方法一)如图二,图二∵,为的中点,∴.又,,∴平面.取的中点,又为的中点,∴、、平行且相等,∴四边形是平行四边形,∴与平行且相等.又平面,∴平面,∴即所求角.由前面证明知平面,∴,又,,∴平面,∴此三棱柱为直棱柱.设∴,,,.(方法二)如图三,图三∵,为的中点,∴.又,,∴平面.取的中点,则,∴平面.∴即与平面所成的角.由前面证明知平面,∴,又,,∴平面,∴此三棱柱为直棱柱.设,∴,,∴.20、(1);(2).【解析】(1)根据诱导公式化简即可得答案;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论