2024届甘肃武威市凉州区高一数学第一学期期末调研试题含解析_第1页
2024届甘肃武威市凉州区高一数学第一学期期末调研试题含解析_第2页
2024届甘肃武威市凉州区高一数学第一学期期末调研试题含解析_第3页
2024届甘肃武威市凉州区高一数学第一学期期末调研试题含解析_第4页
2024届甘肃武威市凉州区高一数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃武威市凉州区高一数学第一学期期末调研试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.幂函数的图像经过点,若.则()A.2 B.C. D.2.已知二次函数值域为,则的最小值为()A.16 B.12C.10 D.83.某国近日开展了大规模COVID-19核酸检测,并将数据整理如图所示,其中集合S表示()A.无症状感染者 B.发病者C.未感染者 D.轻症感染者4.集合A=,B=,则集合AB=()A. B.C. D.5.已知奇函数的定义域为,其图象是一条连续不断的曲线.若,则函数在区间内的零点个数至少为()A.1 B.2C.3 D.46.设函数的部分图象如图,则A.B.C.D.7.已知函数f(x)是偶函数,且f(x)在上是增函数,若,则不等式的解集为()A.{x|x>2} B.C.{或x>2} D.{或x>2}8.已知集合,则(

)A. B.C. D.9.若过,两点的直线的倾斜角为,则y等于()A. B.C.1 D.510.函数的图象如图所示,为了得到函数的图象,可以把函数的图象A.每个点的横坐标缩短到原来的(纵坐标不变),再向左平移个单位B.每个点横坐标伸长到原来的倍(纵坐标不变),再向左平移个单位C.先向左平移个单位,再把所得各点的横坐标伸长到原来的倍(纵坐标不变)D.先向左平移个单位,再把所得各点的横坐标缩短到原来的(纵坐标不变)二、填空题:本大题共6小题,每小题5分,共30分。11.新高考选课走班“3+1+2”模式指的是:语文、数学、外语三门学科为必考科目,物理、历史两门科目必选一门,化学、生物、思想政治、地理四门科目选两门.已知在一次选课过程中,甲、乙两同学选择科目之间没有影响,在物理和历史两门科目中,甲同学选择历史的概率为,乙同学选择物理的概率为,那么在物理和历史两门科目中甲、乙两同学至少有1人选择物理的概率为______12.求值:___________.13.在ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则λ+μ=_________14.已知圆心角为的扇形的面积为,则该扇形的半径为____.15.已知,则函数的最大值是__________16.已知函数的定义域为,当时,,若,则的解集为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,(1)求的解析式和最小正周期;(2)求在区间上的最大值和最小值18.已知函数的定义域为.(1)求;(2)设集合,若,求实数的取值范围.19.如图,是半径为的半圆,为直径,点为的中点,点和点为线段的三等分点,平面外一点满足平面,=.(1)证明:;(2)求点到平面的距离.20.已知函数的定义域为,在上为增函数,且对任意的,都有(1)试判断的奇偶性;(2)若,求实数的取值范围21.已知二次函数的图象过点,且与轴有唯一的交点.(1)求表达式;(2)设函数,若上是单调函数,求实数的取值范围;(3)设函数,记此函数的最小值为,求的解析式.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用待定系数法求出幂函数的解析式,再求时的值详解】解:设幂函数,其图象经过点,,解得,;若,则,解得故选:D2、D【解析】根据二次函数的值域求出a和c的关系,再利用基本不等式即可求的最小值.【详解】由题意知,,∴且,∴,当且仅当,即,时取等号.故选:D.3、A【解析】由即可判断S的含义.【详解】解:由图可知,集合S是集合A与集合B的交集,所以集合S表示:感染未发病者,即无症状感染者,故选:A.4、B【解析】直接根据并集的运算可得结果.【详解】由并集的运算可得.故选:B.5、C【解析】根据奇函数的定义域为R可得,由和奇函数的性质可得、,利用零点的存在性定理即可得出结果.【详解】奇函数的定义域为R,其图象为一条连续不断的曲线,得,由得,所以,故函数在之间至少存在一个零点,由奇函数的性质可知函数在之间至少存在一个零点,所以函数在之间至少存在3个零点.故选:C6、A【解析】根据函数的图象,求出A,和的值,得到函数的解析式,即可得到结论【详解】由图象知,,则,所以,即,由五点对应法,得,即,即,故选A【点睛】本题主要考查了由三角函数的图象求解函数的解析式,其中解答中根据条件求出A,和的值是解决本题的关键,着重考查了运算与求解能力,属于基础题.7、C【解析】利用函数的奇偶性和单调性将不等式等价为,进而可求得结果.详解】依题意,不等式,又在上是增函数,所以,即或,解得或.故选:C.8、B【解析】直接利用两个集合的交集的定义求得M∩N【详解】集合M={x|x+1≥0}={x|x≥-1},N={x|x2<4}={x|-2<x<2},则M∩N={x|-1≤x<2},故选B【点睛】本题主要考查两个集合的交集的定义和求法,属于基础题9、B【解析】根据斜率的定义和坐标表达式即可求得结果.【详解】,.【点睛】本题考查斜率的定义和坐标表达式,注意认真计算,属基础题.10、C【解析】根据函数的图象,设可得再根据五点法作图可得故可以把函数的图象先向左平移个单位,得到的图象,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),即可得到函数的图象,故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】至少1人选择物理即为1人选择物理或2人都选择物理,由题分别得到甲选择物理的概率与乙选择历史的概率,进而求解即可.【详解】由题,设“在物理和历史两门科目中甲、乙两同学至少有1人选择物理”事件,则包括有1人选择物理,或2人都选择物理,因为甲同学选择历史的概率为,则甲同学选择物理的概率为,因为乙同学选择物理的概率为,则乙同学选择历史的概率为,故,故答案为:12、.【解析】根据指数幂的运算性质,结合对数的运算性质进行求解即可.【详解】,故答案为:13、##0.5【解析】根据题意,用表示出与,求出λ、μ的值即可【详解】设,则=(1﹣k)+k=,∴故答案为:14、4【解析】由扇形的面积公式列方程即可求解.【详解】扇形的面积,即,解得:.故答案为:.15、【解析】由函数变形为,再由基本不等式求得,从而有,即可得到答案.【详解】∵函数∴由基本不等式得,当且仅当,即时取等号.∴函数的最大值是故答案为.【点睛】本题主要考查线性规划的应用以及基本不等式的应用,.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).16、##【解析】构造,可得在上单调递减.由,转化为,利用单调性可得答案【详解】由,得,令,则,又,所以在上单调递减由,得,因为,所以,所以,得故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)最大值2,最小值【解析】(1)先将代入,结合求出函数解析式,再用公式求出最小正周期.(2)根据,求出的范围,再求出的范围,即可得出在区间上的最大值和最小值.【详解】解:(1)因为,,所以,所以,又因为,所以,故的解析式为,所以的最小正周期为.(2)因为,所以,所以,则,故在区间上的最大值2,最小值.【点睛】本题主要考查了三角函数的恒等变换的应用,三角函数的性质,注重对基础知识的考查.18、(1)A(2)【解析】(1)由函数的解析式分别令真数为正数,被开方数非负确定集合A即可;(2)分类讨论和两种情况确定实数的取值范围即可.【详解】(1)由,解得,由,解得,∴.(2)当时,函数在上单调递增.∵,∴,即.于是.要使,则满足,解得.∴.当时,函数在上单调递减.∵,∴,即.于是要使,则满足,解得与矛盾.∴.综上,实数的取值范围为.【点睛】本题主要考查函数定义域的求解,集合之间的关系与运算等知识,意在考查学生的转化能力和计算求解能力.19、(1)证明见解析(2)【解析】本题主要考查直线与平面、点到面的距离,考查空间想象能力、推理论证能力(1)证明:∵点E为的中点,且为直径∴,且∴∵FC∩AC=C∴BE⊥平面FBD∵FD∈平面FBD∴EB⊥FD(2)解:∵,且∴又∵∴∴∵∴∵∴∴∴点到平面的距离点评:立体几何问题是高考中的热点问题之一,从近几年高考来看,立体几何的考查的分值基本是20分左右,其中小题一两题,解答题20、(1)奇函数(2)【解析】(1)抽象函数用赋值法,再结合函数奇偶性的定义判断即可;(2)利用奇函数的单调性和定义及函数的单调性,联立不等式不等式组,再解不等式组即可.【小问1详解】因为函数定义域为,令,得.令,得,即,所以函数为奇函数【小问2详解】由(1)知函数为奇函数,又知函数的定义域为,在上为增函数,所以函数在上为增函数因为,即,所以,解得,所以实数的取值范围为21、(1)(2)或(3)见解析【解析】(1)由已知条件分别求出的值,得出解析式;(2)求出函数的表达式,由已知得出区间在对称轴的一侧,进而求出的范围;(3)函数,对称轴,图象开口向上,讨论不同情况下在上的单调性,可得函数的最小值的解析式试题解析:(1)依题意得,,解得,,,从而;(2),对称轴为,图象开口向上当即时,在上单调递增,当即

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论