2024届甘肃省庆阳第六中学数学高一上期末综合测试试题含解析_第1页
2024届甘肃省庆阳第六中学数学高一上期末综合测试试题含解析_第2页
2024届甘肃省庆阳第六中学数学高一上期末综合测试试题含解析_第3页
2024届甘肃省庆阳第六中学数学高一上期末综合测试试题含解析_第4页
2024届甘肃省庆阳第六中学数学高一上期末综合测试试题含解析_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省庆阳第六中学数学高一上期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某学校高一、高二、高三共有学生3500人,其中高三学生人数是高一学生人数的两倍,高二学生人数比高一学生人数多300人,现在用分层抽样的方法抽取的样本容量为35,则应抽取高一学生人数为()A.8 B.11C.16 D.102.过点且与直线平行的直线方程是()A. B.C. D.3.设集合A={1,2,3},B={2,3,4},则A∪B=()A.{1,2,3,4} B.{1,2,3}C.{2,3,4} D.{1,3,4}4.函数的图象与函数的图象关于直线对称,则函数的单调递减区间为A. B.C. D.5.若函数的定义域为R,则下列函数必为奇函数的是()A. B.C. D.6.下列函数是偶函数的是()A. B.C. D.7.函数的定义域为D,若满足;(1)在D内是单调函数;(2)存在,使得在上的值域也是,则称为闭函数;若是闭函数,则实数的取值范围是()A. B.C. D.8.在下列函数中,既是奇函数并且定义域为是()A. B.C. D.9.设,,,则a,b,c的大小关系为()A. B.C. D.10.命题“,是4倍数”的否定为()A.,是4的倍数 B.,不是4的倍数C.,不是4倍数 D.,不是4的倍数二、填空题:本大题共6小题,每小题5分,共30分。11.已知上的奇函数是增函数,若,则的取值范围是________12.已知点A(3,2),B(﹣2,a),C(8,12)在同一条直线上,则a=_____.13.幂函数的图像经过点,则_______14.已知向量,,若,则与的夹角为______15.已知角的终边经过点,则的值为_______________.16.函数在上单调递增,且为奇函数,若,则满足的的取值范围为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,,将图象向右平移个单位,得到函数的图象.(1)求函数的解析式,并求在上的单调递增区间;(2)若函数,求的周期和最大值.18.某网上电子商城销售甲、乙两种品牌的固态硬盘,甲、乙两种品牌的固态硬盘保修期均为3年,现从该商城已售出的甲、乙两种品牌的固态硬盘中各随机抽取50个,统计这些固态硬盘首次出现故障发生在保修期内的数据如下:型号甲乙首次出现故障的时间x(年)硬盘数(个)212123假设甲、乙两种品牌的固态硬盘首次出现故障相互独立.(1)从该商城销售的甲品牌固态硬盘中随机抽取一个,试估计首次出现故障发生在保修期内的概率;(2)某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,试估计恰有一个首次出现故障发生在保修期的第3年(即)的概率.19.已知函数f(x)=lg,(1)求f(x)的定义域并判断它的奇偶性(2)判断f(x)的单调性并用定义证明(3)解关于x的不等式f(x)+f(2x2﹣1)<020.为了在冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层、某栋房屋要建造能使用20年的隔热层,每厘米厚的隔热层的建造成本是6万元,该栋房屋每年的能源消耗费用C(万元)与隔热层厚度x(厘米)满足关系式:,若无隔热层,则每年能源消耗费用为5万元.设为隔热层建造费用与使用20年的能源消耗费用之和.(1)求和的表达式;(2)当隔热层修建多少厘米厚时,总费用最小,并求出最小值.21.已知函数(0<ω<6)的图象的一个对称中心为(1)求f(x)的最小正周期;(2)求函数f(x)的单调递增区间;(3)求f(x)在区间上的最大值和最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】先求出高一学生的人数,再利用抽样比,即可得到答案;【详解】设高一学生的人数为人,则高二学生人数为,高三学生人数为,,,故选:A2、D【解析】先由题意设所求直线为:,再由直线过点,即可求出结果.【详解】因为所求直线与直线平行,因此,可设所求直线为:,又所求直线过点,所以,解得,所求直线方程为:.故选D【点睛】本题主要考查求直线的方程,熟记直线方程的常见形式即可,属于基础题型.3、A【解析】根据并集定义求解即可.【详解】∵A={1,2,3},B={2,3,4},根据并集的定义可知:A∪B={1,2,3,4},选项A正确,选项BCD错误.故选:A.4、D【解析】先由函数是函数的反函数,所以,再求得,再求函数的定义域,再结合复合函数的单调性求解即可.【详解】解:由题意函数的图象与函数的图象关于直线对称知,函数是函数的反函数,所以,即,要使函数有意义,则,即,解得,设,则函数在上单调递增,在上单调递减.因为函数在定义域上为增函数,所以由复合函数的单调性性质可知,则此函数的单调递减区间是,故选D【点睛】本题考查了函数的反函数的求法及复合函数的单调性,重点考查了函数的定义域,属中档题.5、C【解析】根据奇偶性的定义判断可得答案.【详解】,由得是偶函数,故A错误;,由得是偶函数,故B错误;,由得是奇函数,故C正确;,由得是偶函数,故D错误;故选:C.6、D【解析】利用偶函数的性质对每个选项判断得出结果【详解】A选项:函数定义域为,且,,故函数既不是奇函数也不是偶函数,A选项错误B选项:函数定义域为,且,,故函数既不是奇函数也不是偶函数C选项:函数定义域为,,故函数为奇函数D选项:函数定义域为,,故函数是偶函数故选D【点睛】本题考查函数奇偶性的定义,在证明函数奇偶性时需注意函数的定义域;还需掌握:奇函数加减奇函数为奇函数;偶函数加减偶函数为偶函数;奇函数加减偶函数为非奇非偶函数;奇函数乘以奇函数为偶函数;奇函数乘以偶函数为奇函数;偶函数乘以偶函数为偶函数7、C【解析】先判定函数的单调性,然后根据条件建立方程组,转化为使方程有两个相异的非负实根,最后建立关于的不等式,解之即可.【详解】因为函数是单调递增函数,所以即有两个相异非负实根,所以有两个相异非负实根,令,所以有两个相异非负实根,令则,解得.故选.【点睛】本题考查了函数与方程,二次方程实根的分布,转化法,属于中档题.8、C【解析】分别判断每个函数的定义域和奇偶性即可.【详解】对A,的定义域为,故A错误;对B,是偶函数,故B错误;对C,令,的定义域为,且,所以为奇函数,故C正确.对D,的定义域为,故D错误.故选:C.9、A【解析】根据指数函数和对数函数的单调性得出的范围,然后即可得出的大小关系.【详解】由题意知,,即,,即,,又,即,∴故选:A10、B【解析】根据特称量词命题的否定是全称量词命题即可求解【详解】因为特称量词命题的否定是全称量词命题,所以命题“,是4的倍数”的否定为“,不是4的倍数”故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先通过函数为奇函数将原式变形,进而根据函数为增函数求得答案.【详解】因为函数为奇函数,所以,而函数在R上为增函数,则.故答案为:.12、﹣8【解析】根据AC的斜率等于AB的斜率得到,解方程即得解.【详解】由题意可得AC的斜率等于AB的斜率,∴,解得a=﹣8.故答案为:-8【点睛】本题主要考查斜率的计算和三点共线,意在考查学生对这些知识的理解掌握水平.13、【解析】本题首先可以根据函数是幂函数设函数解析式为,然后带入点即可求出的值,最后得出结果。【详解】因为函数是幂函数,所以可设幂函数,带入点可得,解得,故幂函数,即,答案为。【点睛】本题考查函数解析式的求法,考查对幂函数的性质的理解,可设幂函数解析式为,考查计算能力,是简单题。14、##【解析】先求向量的模,根据向量积,即可求夹角.【详解】解:,,所以与的夹角为.故答案为:15、【解析】到原点的距离.考点:三角函数的定义.16、【解析】根据题意,f(x)为奇函数,若f(2)=1,则f(−2)=-1,f(x)在(−∞,+∞)单调递增,且−1⩽f(x−2)⩽1,即f(-2)⩽f(x−2)⩽f(2),则有−2⩽x−2⩽2,解可得0⩽x⩽4,即x的取值范围是;故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),增区间是(2)周期为,最大值为.【解析】(1)由图象平移写出的解析式,根据余弦函数的性质直接确定单调增区间.(2)应用二倍角正弦公式可得,结合正弦型函数的性质求周期和最大值.【小问1详解】由题设,,而在上递减,上递增,所以的单调增区间是.【小问2详解】由(1)有,所以,最小正周期为,最大值为,此时.综上,周期为,最大值为.18、(1);(2)【解析】(1)由频率表示概率即可求出;(2)先分别求出从甲、乙两种品牌随机抽取一个,首次出现故障发生在保修期的第3年的概率,即可求出恰有一个首次出现故障发生在保修期的第3年的概率.【详解】解:(1)在图表中,甲品牌的个样本中,首次出现故障发生在保修期内的概率为:,设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内为事件,利用频率估计概率,得,即从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期内的概率为:;(2)设从该商城销售的甲品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件,从该商城销售的乙品牌固态硬盘中随机抽取一个,其首次出现故障发生在保修期的第3年为事件,利用频率估计概率,得:,则,某人在该商城同时购买了甲、乙两种品牌的固态硬盘各一个,恰有一个首次出现故障发生在保修期的第3年的概率为:.【点睛】关键点点睛:本题解题的关键是利用频率表示概率.19、(1)奇函数(2)见解析(3)【解析】(1)先求函数f(x)的定义域,然后检验与f(x)的关系即可判断;(2)利用单调性的定义可判断f(x)在(﹣1,1)上单调性;(3)结合(2)中函数的单调性及函数的定义域,建立关于x的不等式,可求【详解】(1)的定义域为(-1,1)因为,所以为奇函数(2)为减函数.证明如下:任取两个实数,且,===<0<0,所以在(-1,1)上为单调减函数(3)由题意:,由(1)、(2)知是定义域内单调递减的奇函数即不等式的解集为(,)【点睛】本题主要考查了函数单调性及奇偶性的定义的应用,及函数单调性在求解不等式中的应用20、(1),(2)隔热层修建4厘米厚时,总费用达到最小值,最小值为64万元【解析】(1)由已知,又不建隔热层,每年能源消耗费用为5万元.所以可得C(0)=5,由此可求,进而得到.由已知建造费用为6x,根据隔热层建造费用与20年的能源消耗费用之和为f(x),可得f(x)的表达式(2)由(1)中所求的f(x)的表达式,利用基本不等式求出总费用f(x)的最小值【小问1详解】因为,若无隔热层,则每年能源消耗费用为5万元,所以,故,因为为隔热层建造费用与使用20年的能源消耗费用之和,所以.【小问2详解】,当且仅当,即时,等号成立,即隔热层修建4厘米厚时,总费用达到最小值,最小值为64万元.21、(1);(2)[],k∈Z;(3)最大值为10,最小值为【解析】(1)先降幂化简原式,再利用对称中心求得ω,进而得周期;(2)利用正弦函数的单调区间列出不等式即可得解;(3)利用(2)的结论,确定所给区间的单调性,再得最值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论