基于单片机的恒流源_第1页
基于单片机的恒流源_第2页
基于单片机的恒流源_第3页
基于单片机的恒流源_第4页
基于单片机的恒流源_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

前言随着电子技术的开展,数字电路应用领域的扩展,现今社会,产品智能化、数字化已经成为人们追求的一种趋势,设备的性能、价格,开展空间等备受人们关注,尤其对电子设备的精密度和稳定度最为关注。性能好的电子设备,首先离不开稳定的电源,电源稳定度越高,设备和外围条件就越优越,那么设备的寿命就更长。基于此,人们对数控恒定电流器件的需要越来越迫切。电源技术尤其是数控电源技术是一门实践性很强的工程技术,效劳于各行各业。电力电子技术是电能的最正确应用技术之一。当今电源技术融合了电气、电子、系统集成、控制理论、材料等诸多学科领域。随着计算机和通讯技术开展而来的现代信息技术革命,给电力电子技术提供了广阔的开展前景,同时也给电源提出了更高的要求。随着数控电源在电子装置中的普遍使用,普通电源在工作时产生的误差,会影响整个系统的精确度。电源在使用时会造成很多不良后果,世界各国纷纷对电源产品提出了不同要求并制定了一系列的产品精度标准。只有满足产品标准,才能够进入市场。随着经济全球化的开展,满足国际标准的产品才能获得进出的通行证。数控电源是从80年代才真正的开展起来的,期间系统的电力电子理论开始建立。这些理论为其后来的开展提供了一个良好的根底。在以后的一段时间里,数控电源技术有了长足的开展。但其产品存在数控程度达不到要求、分辨率不高、功率密度比拟低、可靠性较差的缺点。因此数控电源主要的开展方向,是针对上述缺点不断加以改善。单片机技术及电压转换模块的出现为精确数控电源的开展提供了有利的条件。新的变换技术和控制理论的不断开展,各种类型专用集成电路、数字信号处理器件的研制应用,到90年代,己出现了数控精度到达0.05V的数控电源,功率密度到达每立方英寸50W的数控电源。从组成上,数控电源可分成器件、主电路与控制等三局部。目前在电力电子器件方面,几乎都为旋纽开关调节电压,调节精度不高,而且经常跳变,使用麻烦。数字化智能电源是针对传统电源的缺乏设计的,数字化能够减少生产过程中的不确定因素和人为参与的环节数,有效地解决电源模块中诸如可靠性、智能化和产品一致性等工程问题,极大地提高生产效率和产品的可维护性。当今社会,数控恒压技术已经很成熟,但是恒流源方面特别是数控恒流源的技术菜刚刚起步有待开展,高性能的数控横流器件的开发和应用存在巨大的开展空间。本数控直流恒流源系统输出电流稳定,不随负载和环境变化,并且有很高的精度,输出电流误差范围很小,输出电流可在一定范围内任意设定,因而可实际应用于需要稳定度小功率横流源的领域。第一章绪论1.1恒流源的意义恒流源是能够向负载提供恒定电流的电源,一次恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。例如在通用的充电器对蓄电池充电时,随着蓄电池端电压的逐渐升高,充电电源就会相应的减少,为了保证恒流充电,必须随时提高充电器的输出电压,但采用恒流源充电后就可以不必调整期输出电压,从而使劳动强度降低,生产效率得到提高。恒流源还被广泛应用于测量电路中,例如电阻器阻值的测量和分级,电缆电阻的测量等,且电流越稳定,测量就越准确。它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作为其有源负载,以提高放大倍数,并且在差动放大电路、脉冲产生电路中得到广泛应用。除此之外,现行扫描锯齿波的获得,有线通信工电源,电泳、点解、电镀等化学加工装置电源,电子束加工机、离子注入机等电子光化学设备中的供电电源也都必须用用恒流源!1.2恒流源的开展历程1.2.1电真空器件恒流源的诞生世界上最早的恒流源,大约出现在20世纪50年代早期。当时采用的电真空器件是镇流管,优于镇流管有稳定电流的功能,所以有用于交流电路,常被用来稳定电子管的灯丝电流。电子管通常不能单独作为横流元件,但可用它来构成各种横流电路。由于电子管是高雅小电流器件,因此用简单的晶体管电路难于获得高雅小电流恒流源,用电子管电路却容易实现,并且性能相当好!1.2.2晶体管横流源的产生和分类进入60年代,随着半导体技术的开展,设计和制造出了各种性能优越的晶体管和恒流源,并在实际中获得可广泛的应用。晶体管恒流源电路可封装在同一外壳内,成为一个具有横流功能的独立器件,用它可构成直接调整型恒流源。用晶体管做调整元件的各种开环和闭环的恒流源,在许多电子电路中得到了应用。但晶体管恒流源的恒流源的电流稳定度一般不高,且最大输出电流也不活几安培。它适用于那些对稳定度要求不太高的场合。1.2.3集成电路恒流源的出现和种类到了70年代,半导体集成技术的开展,使得恒流源的研制进入了一个新的阶段。长期以来采用别离元件组装的各种恒流源,现在可以集成在一块很小的硅片上面仅需外接少量的元件,集成电路恒流源不仅减小了体积和重量,简化了设计和调试步骤,而且提高了稳定性和可靠性。在各种恒流源电路中,集成电路恒流源的性能堪称最正确。第二章系统原理及理论分析2.1恒流实现原理数模转换芯片AD7543是12位电流输出型,其中OUT1和OUT2是电流的输出端。电流的输出级别可这样计算DX=式中:DX是控制级数电压由集成运算放大器U8A的1脚输出,根据T型电阻网络型的D/A转换关系可知,存在如下通式:〔1〕式中:——输出电压(V)——参考电压(V);R——T网络电阻();——外接反应电阻()。电流放大电路存在如下关系:〔2〕〔3〕式中: Ib——基极电流〔mA〕;Ui——输入电压〔V〕; IL——负载电流〔mA〕。由式〔1〕、〔2〕可得到:〔4〕由于电路中的放大系数值远大于1,而与保持恒定,所以可推出负载电流与输入电压存在如下关系:〔5〕由式(5)、〔1〕可得到:〔6〕其中,K为比例系数由式〔6〕可知,负载电流不随外部负载的变化而改变。当保持不变时(即AD7543的输入数字量保持不变),输出电流维持不变,能够到达恒流的目的。为了实现数控的目的,可以通过微处理器控制AD7543的模拟量输出,从而间接改变电流源的输出电流。从理论上来说,通过控制AD7543的输出等级,可以到达1mA的输出精度。但是本系统恒流源要求输出电流范围是20mA~2000mA,而当器件处于2000mA的工作电流时,属于工作在大电流状态,晶体管长时间工作在这种状态,集电结发热严重,导致晶体管值下降,从而导致电流不能维持恒定。为了克服大电流工作时电流的波动,在输出局部增加了一个反应环节来控制电流稳定,减小电流的波动,此反应回路采用数字形式反应,通过微处理器的实时采样分析后,根据实际输出对电流源进行实时调节。经测试说明,采用常用的大功率电阻作为采样电阻,输出电流波动比拟大,而选用锰铜电阻丝制作采样电阻,电流稳定性得到了改善。2.2系统性能本系统的性能指标主要由两大关系所决定,设定值与D/A采样显示值〔系统内部测量值〕的关系。内部测量值与实际测量值的关系,而后者是所有仪表所存在的误差。在没有采用数字闭环之前,设定值与内部测量值的关系只能通过反复测量来得出它们的关系〔要送多大的数才能使D/A输出与设定电流值相对应的电压值〕,再通过单片机乘除法再实现这个关系,从而根本实现设定值与内部测量值相一致。但由于周围环境等因素的影响,使设定值与内部测量值的关系改变,使得设定值与内部测量值不一致,有时会相差上百毫安,只能重新测量设定值与A/D采样显示值的关系改变D/A入口数值的大小才能重新到达设定值与内部测量值相一致,也就是说还不稳定。在采用数字闭环后。通过比拟设定值与A/D采样显示值,得出它们的差值,再调整D/A的入口数值,从而使A/D采样显示值逐步逼近设定值最终到达一致。而我们无须关心D/A入口数值的大小,从而省去了原程序中双字节乘除的局部,使程序简单而不受周围环境等因素的影响。内部测量值与实际测量值的误差是由于取样电阻与负载电阻和晶体管的放大倍数受温度的影响和测量仪表的误差所造成的,为了减少这种误差,一定要选用温度系数低的电阻来作采样电阻,因此本系统选用锰铜电阻丝来作采样电阻。2.3单片机最小系统组成单片机系统是整个数控系统的核心局部,它主要用于键盘按键管理、数据处理、实时采样分析系统参数及对各局部反应环节进行整体调整。主要包括AT89S52单片机、模数转换芯片ADC0809、数模转换芯片AD7543、数码管显示译码芯片74LS47与74LS138等器件。下列图为组成第三章总体方案论证与比拟3.1方案一方案一原理如下列图,采用EPROM和D\A转换器等数字器件完成的控制。次方案使用计数器,一方面完成电压的译码显示,另一方面其输出作为EOROM的地址输入,而由EPROM得输出经D\A变换后控制误差放大的基准电压来实现输出步进。但由于此方案使用开环控制策略,电路简单,本钱低,对最后的输出结果不能进寻根建好的调整和修正,使得输出电流精度不高,且控制数据烧录在EPROM中,是系统设计灵活降低,子适应能力差。3.2方案二此方案如下列图,主要是以单片机为核心构建控制器,通过对电流值进行预置,单片机输出相应数字信号,经过D\A转换、信号放大、电平转换、压控恒流源,输出电信号。实际输出的电流再利用精密采样电阻转换成电压信号,经过高输入阻抗差动放大器、D\A转换,将信号反应到单片机中,再将输出反应信号于设定值比拟,送出调整信号,最后输出新的电流值,这样就形成了闭环调节,锁定输出电流,提高了输出电流的精度和稳定度。本方案采用单片机进行控制、显示、预置,使得系统灵活方便,电流输出精度和稳定度较高。但在此方案存在稳定性受限于单片机处理数据的能力。3.3方案三方案图如下所示,整体原理框图于方案二大致相同,进行总体控制、算法运算、显示和置数的等功能。配合VHDL,语言设计数字硬件控制模块进行控制,具有运行速度快,工作稳定可靠的特点。3.4最终方案确定1〕方案一采用横流二极管或者横流三极管,精度比拟高,但这种电路能实现的恒流源范围很小,智能到达几十毫安,不能到达设计的要求。2〕方案二采用四端可调恒流源,这种器件考改变外围电阻元件参数,从而使电流到达可调的目的,这种器件能够满足20--2000毫安的电流输出要求。改变输出电流,通常有两种方法:一是通过手动调节来改变输出电流,这种方法不能满足数控调节的要求;二是通过数字电位器来改变需要的电阻参数,虽然可以到达数控的目的,但数字电位器的没一级步进电阻比拟大,很难连续调节输出电流。3〕方案三此方案恒流源通过改变横流的外围电压,利用电压的大小来控制输出电流的大小,电压控制电路采用数控的方式,利用单片机送出数字信号,经过D/A转换器转变成模拟信号,再发送到大功率三极管进行放大。当改变负载大小时,根本不够影响电流的输出,使得系统一直维持在设定电流值小范围内。该方案通过软件方法实现输出电流稳定,功能比拟容易实现,也便于操作。以上三个整体方案各自的特点,进过比拟可以看出,方案三是最优方案,但考虑到设计工作量大,测试复杂,所以最终选择方案二!此设计在采用整体方案的方案二的根底上进行改良与恒流方y源案的方案三相结合,构成了以单片机为核心构建器,通过键盘对电流值进行预置或按键逐步微调,单片机输出相应的数字信号,经过D/A转换、信号放大、压控恒流源,输出电流信号。实际输出的电压值利用精密电阻进行分析采样后,经过高输入阻抗放大器构成的电压跟随器、D/A转换,将信号反应到单片机,将输出反应信号再与预置限流值比拟,构成实时监控的功能。因为在电流源方案中大功率三极管采用了场效应管,而且采样电阻使用了根本上没有温漂的康铜丝作为采样电阻,从而使整个系统工作在最正确状态。即使不用对输出电流进行采样形成闭环控制回路也可以到达预期的目的。而且省去了不少硬件开支。本方案采用单片机进行控制、显示、预置数使得系统灵活方便,电流输出精度和稳定度高。但此方案存在受限于单片机数据处理能力!第四章模块电路设计与比拟4.1模块电路设计与比拟恒流源方案选择方案一:采用恒流二极管或者恒流三极管,精度比拟高,但这种电路能实现的恒流范围很小,只能到达十几毫安,不能到达题目的要求。方案二:采用四端可调恒流源,这种器件靠改变外围电阻元件参数,从而使电流到达可调的目的,这种器件能够到达1~2000毫安的输出电流。改变输出电流,通常有两种方法:一是通过手动调节来改变输出电流,这种方法不能满足题目的数控调节要求;二是通过数字电位器来改变需要的电阻参数,虽然可以到达数控的目的,但数字电位器的每一级步进电阻比拟大,所以很难调节输出电流。方案三:压控恒流源,通过改变恒流源的外围电压,利用电压的大小来控制输出电流的大小。电压控制电路采用数控的方式,利用单片机送出数字量,经过D/A转换转变成模拟信号,再送到大功率三极管进行放大。单片机系统实时对输出电流进行监控,采用数字方式作为反应调整环节,由程序控制调节功率管的输出电流恒定。当改变负载大小时,根本上不影响电流的输出,采用这样一个闭路环节使得系统一直在设定值维持电流恒定。该方案通过软件方法实现输出电流稳定,易于功能的实现,便于操作,应选择此方案第五章模块电路设计5.1单片机控制电路5.1.1AT89C52本系统采用AT89C52单片机作为控制核心AT89C52是51系列单片机的一个型号,是ATMEL公司生产的。AT89C52是一个低电压,高性能CMOS8位单片机,片内含8kbytes的可反复擦写的Flash只读程序存储器和256bytes的随机存取数据存储器〔RAM〕,器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。AT89C52有40个引脚,32个外部双向输入/输出〔I/O〕端口,同时内含2个外中断口,3个16位可编程定时计数器,2个全双工串行通信口,2个读写口线,AT89C52可以按照常规方法进行编程,但不可以在线编程(S系列的才支持在线编程)。其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的Flash存储器可有效地降低开发本钱。AT89C52有PDIP、PQFP/TQFP及PLCC等三种封装形式,以适应不同产品的需求。5.12AT89C52的主要功能特性兼容MCS51指令系统〔2〕8k可反复擦写(>1000次〕FlashROM〔3〕32个双向I/O口〔4〕256x8bit内部RAM〔5〕3个16位可编程定时/计数器中断时钟频率0-24MHz(6)2个串行中断(7)可编程UART串行通道(8)2个外部中断源(9)共8个中断源(10)2个读写中断口线(11)3级加密位5.13AT89C52各引脚功能及管脚电压P0口P0口是一组8位漏极开路型双向I/O口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8个TTL逻辑门电路,对端口P0写“1〞时,可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址〔低8位〕和数据总线复用,在访问期间激活内部上拉电阻。在Flash编程时,P0口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。P1口P1是一个带内部上拉电阻的8位双向I/O口,P1的输出缓冲级可驱动〔吸收或输出电流〕4个TTL逻辑门电路。对端口写“1〞,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。与AT89C51不同之处是,P1.0和P1.1还可分别作为定时/计数器2的外部计数输入〔P1.0/T2〕和输入〔P1.1/T2EX〕P2口P2是一个带有内部上拉电阻的8位双向I/O口,P2的输出缓冲级可驱动〔吸收或输出电流〕4个TTL逻辑门电路。对端口P2写“1〞,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16位地址的外部数据存储器〔例如执行MOVX@DPTR指令〕时,P2口送出高8位地址数据。在访问8位地址的外部数据存储器〔如执行MOVX@RI指令〕时,P2口输出P2锁存器的内容。Flash编程或校验时,P2亦接收高位地址和一些控制信号。P3口P3口是一组带有内部上拉电阻的8位双向I/O口。P3口输出缓冲级可驱动〔吸收或输出电流〕4个TTL逻辑门电路。对P3口写入“1〞时,它们被内部上拉电阻拉高并可作为输入端口。此时,被外部拉低的P3口将用上拉电阻输出电流〔IIL〕。P3口除了作为一般的I/O口线外,更重要的用途是它的第二功能P3口还接收一些用于Flash闪速存储器编程和程序校验的控制信号。5.2D/A接口设计和D/A芯片的选择D/A转换采用24位TLC5615构成的转换电路,引脚如图2.4所示。TLC5615是一个串行10位DAC芯片,性能比早期电流型输出的DAC要好。只需要三根串行总线就可以完成十位数据的串行输入,易于和工业标准的微处理器或微控制器〔单片机〕接口。D/A转换电路主要负责把单片机输出的控制信号送给高精度运算放大器,控制电流源输出电流大小TLC5615引脚图硬件连接图5.3键盘及LED显示电路CH451的功能与引脚介绍CH451是一个整合了数码管显示驱动和键盘扫描控制以及μP监控的多功能外围芯片。CH451内置RC振荡电路,可以直接动态驱动8位数码管或者64位LED,具有BCD译码或不译码功能,可实现数据的左移、右移、左循环、右循环、各数字独立闪烁等控制功能。CH451内置大电流驱动级,段电流不小于30mA,字电流不小于160mA,并有16级亮度控制功能;在键盘控制方面,该器件内置64键键盘控制器,可实现8×8矩阵键盘扫描,并内置去抖动电路,可提供按键中断与按键释放标志位等功能;在外部接口方面,CH451可选择简洁的1线串行接口或高速4线串行接口,且内置上电复位,可提供高电平有效复位和低电平有效复位两种输出,同时内置看门狗电路Watch-Dog。5.4硬件连接通过单片机AT89C52和CH451LED显示以及大功率三极管放大器形成稳定恒流源.控恒流源,到达了题目要求。在数据测试和调试方面,由于仪表存在误差和电路器件因工作时间过长温度升高而产生的误差,使得测量数据不是很精确,本系统就此通过软件设计,减少误差的存在,大大提高了系统的精度。第六章软件设计本软件要实现的功能是:键盘对单片机输入数据,单片机对获得的数据进行处理,送到位数模转换

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论