下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题1.7充分条件与必要条件-重难点题型精讲1.命题及相关概念2.充分条件与必要条件一般地,数学中的每一条判定定理都给出了相应数学结论成立的一个充分条件.数学中的每一条性质定理都给出了相应数学结论成立的一个必要条件.充要条件如果“若p,则q”和它的逆命题“若q,则p”均是真命题,即既有p⇒q,又有q⇒p,记作p⇔q.此时p既是q的充分条件,也是q的必要条件.我们说p是q的充分必要条件,简称为充要条件.如果p是q的充要条件,那么q也是p的充要条件,即如果p⇔q,那么p与q互为充要条件.温馨提示:“⇔”的传递性若p是q的充要条件,q是s的充要条件,即p⇔q,q⇔s,则有p⇔s,即p是s的充要条件.【题型1充分条件、必要条件及充要条件的判定】【方法点拨】(1)定义法:首先分清条件和结论,然后判断p⇒q、q⇒p和p⇔q是否成立,最后得出结论.(2)命题判断法:①若p⇒q,则称p是q的充分条件,q是p的必要条件.②若p⇔q,则p是q的充要条件.③若p⇒q,且qeq\o(⇒,/)p,则称p是q的充分不必要条件.④若peq\o(⇒,/)q,且q⇒p,则称p是q的必要不充分条件.⑤若peq\o(⇒,/)q,且qeq\o(⇒,/)p,则称p是q的既不充分也不必要条件.【例1】(2022•呼和浩特一模)已知集合A={x|x≥0},B={x|x﹣2>0},则x∈A是x∈B的()A.充分不要条件 B.必要不充分条件 C.充分必要条件 D.既不充分他不要条件【变式1-1】(2022春•温州期中)设x,y都是实数,则“x>2且y>3”是“x>2或y>3”的()条件A.充分非必要 B.必要非充分 C.充要 D.既非充分也非必要【变式1-2】(2022•西宁一模)设m∈R,则“m<0”是“m<1”的()A.充分必要条件 B.即不充分也不必要条件 C.充分不必要条件 D.必要不充分条件【变式1-3】(2022•柯桥区模拟)设x∈R,则“x>2”是“2x<A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件【题型2充分条件、必要条件及充要条件的探索】【方法点拨】(1)先寻找必要条件,即将探求充要条件的对象视为结论,寻找使之成立的条件;再证明此条件是该对象的充分条件,即从充分性和必要性两方面说明.(2)将原命题进行等价变形或转换,直至获得其成立的充要条件,探求的过程同时也是证明的过程,因此探求过程每一步都是等价的,所以不需要将充分性和必要性分开来证.【例2】(2022春•射洪市校级期中)已知p:0<x<2,那么p的一个充分不必要条件是()A.1<x<3 B.﹣1<x<1 C.0<x<1 D.1<x<3【变式2-1】(2021秋•南宁期末)已知p:0<x<1,那么p的一个充分不必要条件是()A.1<x<3 B.﹣1<x<1 C.13<x<【变式2-2】(2022•全国一模)已知a,b∈R,则“ab≠0”的一个必要条件是()A.a+b≠0 B.a2+b2≠0 C.a3+b3≠0 D.1【变式2-3】(2021秋•湖南期中)“x﹣1>0”成立的一个必要不充分条件的是()A.x>1 B.x>2 C.x<3 D.x>0【题型3由充分条件、必要条件求参数】【方法点拨】根据充分、必要条件求参数的取值范围时,先将p,q等价转化,再根据充分、必要条件与集合间的关系,将问题转化为相应的两个集合之间的包含关系,然后建立关于参数的不等式(组)进行求解.【例3】(2021秋•赫章县期末)若“1≤x≤4”是“a≤x≤a+4”的充分不必要条件,则实数a的取值范围为()A.a≤0 B.0≤a≤1 C.0<a<1 D.a≤0或a≥1【变式3-1】(2021秋•罗庄区校级月考)已知P={x|a﹣4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要条件,则实数a的取值范围是()A.﹣1≤a≤5 B.﹣1<a≤5 C.﹣2≤a≤3 D.﹣2≤a<3【变式3-2】(2022•晋中模拟)已知条件p:﹣1<x<1,q:x>m,若p是q的充分不必要条件,则实数m的取值范围是()A.[﹣1,+∞) B.(﹣∞,﹣1) C.(﹣1,0) D.(﹣∞,﹣1]【变式3-3】(2022•渭滨区校级模拟)如果不等式|x﹣a|<1成立的充分不必要条件是12<xA.12<a<32 B.12≤a≤32 C【题型4充要条件的证明】【方法点拨】证明充要条件时要从充分性和必要性两个方面分别证明,首先分清哪个是条件,哪个是结论,然后确定推出方向,即充分性需要证明“条件”⇒“结论”,必要性需要证明“结论”⇒“条件”.【例4】(2021秋•禅城区校级月考)已知ab≠0,求证:a3﹣2a2b+2ab2﹣b3=0成立的充要条件是a﹣b=0.【变式4-1】(2021秋•金山区校级月考)设n∈Z,求证:“n是偶数”是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 海南卫生健康职业学院《演讲与辩论》2023-2024学年第一学期期末试卷
- 2025年度私人车辆转让及绿色环保认证合同3篇
- 2025版金融风险评估与管理服务协议2篇
- 海南师范大学《欧洲现代主义建筑选读》2023-2024学年第一学期期末试卷
- 二零二五年度影视作品制作担保合同3篇
- 二零二五年度拆迁项目综合评估居间代理服务协议书模板2篇
- 2025年度版权购买合同属性为图书出版权2篇
- 二零二五年度智能办公家具销售与服务协议3篇
- 2025年出口贸易融资续约合同范本3篇
- 幼儿园财务管理制度细则模版(2篇)
- 《FANUC-Oi数控铣床加工中心编程技巧与实例》教学课件(全)
- 北师大版小学三年级数学下册课件(全册)
- 工程临时用工确认单
- 简约清新大气餐饮行业企业介绍模板课件
- 氮气窒息事故案例经验分享
- 某公司年度生产经营计划书
- 厂房租赁合同标准版(通用10篇)
- 《教育心理学》教材
- 易制毒化学品安全管理制度(3篇)
- 建设单位业主方工程项目管理流程图
- 断裂力学——2Griffith理论(1)
评论
0/150
提交评论