版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年甘肃省通渭县高一上数学期末考试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.“”是“”的()A.必要不充分条件 B.充分不必要条件C.充要条件 D.既不充分也不必要条件2.下列函数中,在R上为增函数的是()A.y=2-xC.y=2x3.若,则()A.2 B.1C.0 D.4.如果,且,那么下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则5.函数的部分图象如图所示,则函数的解析式为()A. B.C. D.6.满足的角的集合为()A. B.C. D.7.已知,,,则()A. B.C. D.28.设集合U=R,,,则图中阴影部分表示的集合为()A.{x|x≥1} B.{x|1≤x<2}C.{x|0<x≤1} D.{x|x≤0}9.函数图象的一条对称轴是A. B.x=πC. D.x=2π10.函数f(x)图象大致为()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数,则______.12.已知且,且,如果无论在给定的范围内取任何值时,函数与函数总经过同一个定点,则实数__________13.计算_________.14.有关数据显示,2015年我国快递行业产生的包装垃圾约为400万吨.有专家预测,如果不采取措施,快递行业产生的包装垃圾年平均增长率将达到50%.由此可知,如果不采取有效措施,则从___________年(填年份)开始,快递行业产生的包装垃圾超过4000万吨.(参考数据:,)15.已知幂函数f(x)=xa的图象经过点(8,2),则f(27)的值为____________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.△ABC的两顶点A(3,7),B(,5),若AC的中点在轴上,BC的中点在轴上(1)求点C的坐标;(2)求AC边上中线BD的长及直线BD的斜率17.如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.18.一种专门占据内存的计算机病毒,能在短时间内感染大量文件,使每个文件都不同程度地加长,造成磁盘空间的严重浪费.这种病毒开机时占据内存2KB,每3分钟后病毒所占内存是原来的2倍.记x分钟后的病毒所占内存为yKB.(1)求y关于x的函数解析式;(2)如果病毒占据内存不超过1GB(1GB=21019.已知二次函数.(1)若函数满足,且.求的解析式;(2)若对任意,不等式恒成立,求的最大值.20.已知函数是偶函数(其中a,b是常数),且它的值域为(1)求的解析式;(2)若函数是定义在R上的奇函数,且时,,而函数满足对任意的,有恒成立,求m的取值范围21.已知函数的定义域为(1)当时,求函数的值域;(2)若函数在定义域上是减函数,求的取值范围;(3)求函数在定义域上的最大值及最小值,并求出函数取最值时的值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】利用充分条件,必要条件的定义即得.【详解】由可推出,由,即或,推不出,故“”是“”的充分不必要条件.故选:B.2、C【解析】对于A,y=2-x=12x,在R上是减函数;对于B,y=x2在-∞,0上是减函数,在0,+∞上是增函数;对于C,当【详解】解:对于A,y=2-x=12对于B,y=x2在-∞,0对于C,当x≥0时,y=2x是增函数,当x<0时,y=x是增函数,所以函数fx对于D,y=lgx的定义域是0,+∞故选:C.3、C【解析】根据正弦、余弦函数的有界性及,可得,,再根据同角三角函数的基本关系求出,即可得解;【详解】解:∵,,又∵,∴,,又∵,∴,∴,故选:C4、D【解析】根据不等式的性质逐项分析判断即可.【详解】对于A,若,,满足,但不成立,错误;对于B,若,则,错误;对于C,若,,满足,但不成立,错误;对于D,由指数函数的单调性知,正确.故选:D.5、B【解析】由图像求出周期再根据可得,再由,代入可求,进而可求出解析式.【详解】由图象可知,,得,又∵,∴.当时,,即,解得.又,则,∴函数的解析式为.故选:B.【点睛】本题主要考查了由三角函数的图像求函数解析式,需熟记正弦型三角函数的周期公式,属于基础题.6、D【解析】利用正弦函数的图像性质即可求解.【详解】.故选:D.7、D【解析】利用同角三角函数关系式可求,再应用和角正切公式即求.【详解】∵,,∴,,∴.故选:D.8、D【解析】先求出集合A,B,再由图可知阴影部分表示,从而可求得答案【详解】因为等价于,解得,所以,所以或,要使得函数有意义,只需,解得,所以则由韦恩图可知阴影部分表示.故选:D.9、C【解析】利用函数值是否是最值,判断函数的对称轴即可【详解】当x时,函数cos2π=1,函数取得最大值,所以x是函数的一条对称轴故选C【点睛】对于函数由可得对称轴方程,由可得对称中心横坐标.10、A【解析】根据函数图象的特征,利用奇偶性判断,再利用特殊值取舍.【详解】因为f(x)=f(x),所以f(x)是奇函数,排除B,C又因为,排除D故选:A【点睛】本题主要考查了函数的图象,还考查了理解辨析的能力,属于基础题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、2【解析】根据自变量的范围,由内至外逐层求值可解.【详解】又故答案为:2.12、3【解析】因为函数与函数总经过同一个定点,函数的图象经过定点,所以函数总也经过,所以,,,故答案为.13、1【解析】,故答案为114、2021【解析】根据条件列指数函数,再解指数不等式得结果.【详解】设快递行业产生的包装垃圾为万吨,表示从2015年开始增加的年份数,由题意可得,,得,两边取对数可得,∴,得,解得,∴从2015+6=2021年开始,快递行业产生的包装垃圾超过4000万吨.故答案为:202115、3【解析】根据幂函数f(x)=xa的图象经过点(8,2)求出a的值,再求f(27)的值.【详解】幂函数f(x)=xa的图象经过点(8,2),则8α=2,∴α=,∴f(x)=,∴f(27)==3.故答案为3【点睛】本题主要考查幂函数的概念和解析式的求法,考查幂函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2),【解析】(1)由条件利用线段的中点公式求得点C的坐标;(2)求得线段AC的中点D的坐标,再利用两点间的距离公式、斜率公式求得AC边上的中线BD的长及直线BD的斜率试题解析:(1)设,考点:1.待定系数法求直线方程;2.中点坐标公式17、(1)见解析(2)见解析【解析】(1)先由平面几何知识证明,再由线面平行判定定理得结论;(2)先由面面垂直性质定理得平面,则,再由AB⊥AD及线面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC试题解析:证明:(1)在平面内,因为AB⊥AD,,所以.又因为平面ABC,平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因为平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因为AC平面ABC,所以AD⊥AC.点睛:垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直18、(1)y=2x3(2)57分钟【解析】(1)根据题意可得,y关于x的函数解析式;(2)先根据题意,换算病毒占据的最大内存1GB【小问1详解】因为这种病毒开机时占据内存2KB,每3分钟后病毒所占内存是原来的2倍.所以x分钟后的病毒所占内存为,得y=2x3【小问2详解】因为病毒占据内存不超过1GB时,计算机能够正常使用,故有2x3+1所以本次开机计算机能正常使用的时长为57分钟.19、(1)(2)【解析】(1)利用待定系数的方法确定二次函数解析式(2)由二次不等式恒成立,转化参数关系,代入通过讨论特殊情况后配合基本不等式求出最值【小问1详解】设,由已知代入,得,对于恒成立,故,解得,又由,得,所以;【小问2详解】若对任意,不等式恒成立,整理得:恒成立,因为a不为0,所以,所以,所以,令,因为,所以,若时,此时,若时,,当时,即时,上式取得等号,综上的最大值为.20、(1)(2)【解析】(1)由偶函数的定义结合题意可求出,再由函数的值域为可求出,从而可求出函数解析式,(2)由题意求出的解析式,判断出当时,,从而将问题转化为满足对任意的恒成立,设,则对恒成立,然后利用二次函数的性质求解【小问1详解】由题∵是偶函数,∴,∴∴或,又∵的值域为,∴,∴,∴或,∴;【小问2详解】若函数是定义在R上的奇函数,且时,,由(1)知,∴时,;时,;当时,,显然时,,若,则又满足对任意的,有恒成立,∴对任意的恒成立,即满足对任意的恒成立,即,设,则对恒成立,设,∵函数的图像开口向上,∴只需,∴,∴所求m的取值范围是.21、(1);(2);(3)见解析【解析】(1)函数,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年施工现场环保法律法规培训合同3篇
- 2024年房地产项目贷款担保合同细则3篇
- 2024年度水电暖气工程数据中心运维合同2篇
- 简易 灯具订购合同模板
- 2024年度个人借款合同范本(含借款合同变更通知)3篇
- 饭店雇佣合同模板
- 2024年南宁租赁市场租赁房屋租赁期限合同6篇
- 2024年度园林苗木采购与园林景观施工管理合同2篇
- 2024年度教育培训服务与课程代办理事务合同
- 2024年权威行政赔偿协议样本版B版
- 宪法知识讲座讲稿(课堂PPT)
- 多维阅读Crazy Cat 课件
- 数学建模案例分析--线性代数建模案例(20例)
- 马来酸酐接枝聚丙烯
- PE管道焊接工艺卡
- 第四章分子的对称性
- (最新)专家服务基层工作培训会领导讲话(精)
- 苏州预防性试验、交接试验费用标准
- 最新【SD高达G世纪-超越世界】各强力机体开发路线
- 专业英语四级听力模拟题
- [广州]污水处理厂工程监理投标大纲(325页完整)_secret
评论
0/150
提交评论