2023-2024学年辽宁省大连市一零三中学高一数学第一学期期末经典模拟试题含解析_第1页
2023-2024学年辽宁省大连市一零三中学高一数学第一学期期末经典模拟试题含解析_第2页
2023-2024学年辽宁省大连市一零三中学高一数学第一学期期末经典模拟试题含解析_第3页
2023-2024学年辽宁省大连市一零三中学高一数学第一学期期末经典模拟试题含解析_第4页
2023-2024学年辽宁省大连市一零三中学高一数学第一学期期末经典模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年辽宁省大连市一零三中学高一数学第一学期期末经典模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数f(x)=lnx﹣1的零点所在的区间是A(1,2) B.(2,3)C.(3,4) D.(4,5)2.如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交 B.平行C.异面 D.以上都有可能3.已知函数,则,则A. B.C.2 D.4.设全集,集合,则()A.{3,5} B.{2,4}C.{1,2,3,4,5} D.{2,3,4,5,6}5.已知函数,若方程有五个不同的实数根,则实数的取值范围为()A. B.C. D.6.为了得到函数的图象,只需将的图象上的所有点A.横坐标伸长2倍,再向上平移1个单位长度B.横坐标缩短倍,再向上平移1个单位长度C.横坐标伸长2倍,再向下平移1个单位长度D.横坐标缩短倍,再向下平移1个单位长度7.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,得到的图象对应的解析式是A. B.C. D.8.一个多面体的三视图如图所示,则该多面体的表面积为()A.21+ B.18+C.21 D.189.若,则的最小值为()A.4 B.3C.2 D.110.已知函数,则使得成立的的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,则不等式的解集为______12.设为向量的夹角,且,,则的取值范围是_____.13.函数是奇函数,则实数__________.14.已知,,且,则的最小值为___________.15.在ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则λ+μ=_________16.用二分法求方程x2=2的正实根的近似解(精确度0.001)时,如果我们选取初始区间是[1.4,1.5],则要达到精确度至少需要计算的次数是______________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,是夹角为的两个单位向量,且向量,求:,,;向量与夹角的余弦值18.设A是实数集的非空子集,称集合且为集合A的生成集(1)当时,写出集合A的生成集B;(2)若A是由5个正实数构成的集合,求其生成集B中元素个数的最小值;(3)判断是否存在4个正实数构成的集合A,使其生成集,并说明理由19.已知函数是偶函数.(1)求实数的值;(2)若函数,函数只有一个零点,求实数的取值范围.20.已知函数.(1)当,为奇函数时,求b的值;(2)如果为R上的单调函数,请写出一组符合条件的a,b值;(3)若,,且的最小值为2,求的最小值.21.提高过江大桥的车辆通行的车辆通行能力可改善整个城市的交通状况,在一般情况下大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,就会造成堵塞,此时车流速度为0:当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数(1)当时,求函数的表达式:(2)如果车流量(单位时间内通过桥上某或利点的车辆数)(单位:辆/小时)那么当车流密度为多大时,车流量可以达到最大,并求出最大值,(精确到1辆/小时)

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】∵,在递增,而,∴函数的零点所在的区间是,故选B.2、B【解析】因为G1,G2分别是△SAB和△SAC的重心,所以,所以.又因为M、N分别为AB、AC的中点,所以MN//BC,所以考点:线面平行的判定定理;线面平行的性质定理;公理4;重心的性质点评:我们要掌握重心性质:若G1为△SAB的重心,M为AB中点,则3、B【解析】因为,所以,故选B.4、D【解析】先求补集,再求并集.详解】,则.故选:D5、A【解析】由可得或,数形结合可方程只有解,则直线与曲线有个交点,结合图象可得出实数的取值范围.【详解】由可得或,当时,;当时,.作出函数、、图象如下图所示:由图可知,直线与曲线有个交点,即方程只有解,所以,方程有解,即直线与曲线有个交点,则.故选:A.6、B【解析】由题意利用函数y=Asin(ωx+φ)的图象变换规律,得出结论【详解】将的图象上的所有点的横坐标缩短倍(纵坐标不变),可得y=3sin2x的图象;再向上平行移动个单位长度,可得函数的图象,故选B【点睛】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,熟记变换规律是关键,属于基础题7、C【解析】将函数y=sin(x-)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)得到y=sin(x-),再向左平移个单位得到的解析式为y=sin((x+)-)=y=sin(x-),故选C8、A【解析】由题意,该多面体的直观图是一个正方体挖去左下角三棱锥和右上角三棱锥,如下图,则多面体的表面积.故选A.考点:多面体的三视图与表面积.9、D【解析】利用“乘1法”即得.【详解】因为,所以,∴,当且仅当时,即时取等号,所以的最小值为1.故选:D.10、C【解析】令,则,从而,即可得到,然后构造函数,利用导数判断其单调性,进而可得,解不等式可得答案【详解】令,则,,所以,所以,令,则,所以,所以,所以在单调递增,所以由,得,所以,解得,故选:C【点睛】关键点点睛:此题考查不等式恒成立问题,考查函数单调性的应用,解题的关键是换元后对不等式变形得,再构造函数,利用函数的单调性解不等式.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】分x小于等于0和x大于0两种情况根据分段函数分别得到f(x)的解析式,把得到的f(x)的解析式分别代入不等式得到两个一元二次不等式,分别求出各自的解集,求出两解集的并集即可得到原不等式的解集【详解】解:当x≤0时,f(x)=x+2,代入不等式得:x+2≥x2,即(x-2)(x+1)≤0,解得-1≤x≤2,所以原不等式的解集为[-1,0];当x>0时,f(x)=-x+2,代入不等式得:-x+2≥x2,即(x+2)(x-1)≤0,解得-2≤x≤1,所以原不等式的解集为[0,1],综上原不等式的解集为[-1,1].故答案为[-1,1]【点睛】此题考查了不等式的解法,考查了转化思想和分类讨论的思想,是一道基础题12、【解析】将平方可得cosθ,利用对勾函数性质可得最小值,从而得解.【详解】两个不共线的向量,的夹角为θ,且,可得:,可得cosθ那么cosθ的取值范围:故答案为【点睛】本题考查向量的数量积的应用,向量夹角的求法,考查计算能力,属于中档题.13、【解析】根据给定条件利用奇函数的定义计算作答.【详解】因函数是奇函数,其定义域为R,则对,,即,整理得:,而不恒为0,于得,所以实数.故答案为:14、【解析】由已知凑配出积为定值,然后由基本不等式求得最小值【详解】因为,,且,所以,当且仅当,即时等号成立故答案为:15、##0.5【解析】根据题意,用表示出与,求出λ、μ的值即可【详解】设,则=(1﹣k)+k=,∴故答案为:16、7【解析】设至少需要计算n次,则n满足,即,由于,故要达到精确度要求至少需要计算7次三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】根据,是夹角为的两个单位向量即可求出,然后利用向量的模的公式和数量积公式即可求得结果;根据即可求出向量夹角的余弦值【详解】是夹角为的两个单位向量;;,,;;【点睛】本题考查向量模的公式,考查向量数量积计算公式以及向量夹角的余弦公式,属于基础题18、(1)(2)7(3)不存在,理由见解析【解析】(1)利用集合的生成集定义直接求解.(2)设,且,利用生成集的定义即可求解;(3)不存在,理由反证法说明.【小问1详解】,【小问2详解】设,不妨设,因为,所以中元素个数大于等于7个,又,,此时中元素个数大于等于7个,所以生成集B中元素个数的最小值为7.【小问3详解】不存在,理由如下:假设存在4个正实数构成的集合,使其生成集,不妨设,则集合A的生成集则必有,其4个正实数的乘积;也有,其4个正实数乘积,矛盾;所以假设不成立,故不存在4个正实数构成的集合A,使其生成集【点睛】关键点点睛:本题考查集合的新定义,解题的关键是理解集合A的生成集的定义,考查学生的分析解题能力,属于较难题.19、(1);(2).【解析】(1)利用函数为偶函数推出的值,即可求解;(2)根据函数与方程之间的关系,转化为方程只有一个根,利用换元法进行转化求解即可.【详解】(1)由题意,函数为偶函数,所以,即,所以,即,则对恒成立,解得.(2)由只有一个零点,所以方程有且只有一个实根,即方程有且只有一个实根,即方程有且只有一个实根,令,则方程有且只有一个正根,①当时,,不合题意;②当时,因为0不是方程的根,所以方程的两根异号或有两相等正根,由,解得或,当,则不合题意,舍去;当,则,符合题意,若方程有两根异号,则,所以,综上,的取值范围是.20、(1)(2),(答案不唯一,满足即可)(3)【解析】(1)当时,根据奇函数的定义,可得,化简整理,即可求出结果;(2)由函数和函数在上的单调递性,可知,即可满足题意,由此写出一组即可;(3)令,则,然后再根据基本不等式和已知条件,可得,再根据基本不等式即可求出结果.【小问1详解】解:当时,,因为是奇函数,所以,即,得,可得;【小问2详解】解:当,时,此时函数为增函数.(答案不唯一,满足即可)检验:当和时,,,均是上的单调递增函数,所以此时是上的单调递增函数,满足题意;【小问3详解】解:令,则,所以,即,当且仅当,即时等号成立,所以,由题意,,所以.由,当且仅当时等号成立,由解得,所以.21、(1);(2)当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333/小时..【解析】详解】试题分析:本题考查函数模型

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论