2023-2024学年山东省德州市夏津第一中学数学高一上期末考试试题含解析_第1页
2023-2024学年山东省德州市夏津第一中学数学高一上期末考试试题含解析_第2页
2023-2024学年山东省德州市夏津第一中学数学高一上期末考试试题含解析_第3页
2023-2024学年山东省德州市夏津第一中学数学高一上期末考试试题含解析_第4页
2023-2024学年山东省德州市夏津第一中学数学高一上期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年山东省德州市夏津第一中学数学高一上期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知向量,其中,则的最小值为()A.1 B.2C. D.32.在下列函数中,既是奇函数并且定义域为是()A. B.C. D.3.已知函数的图象与函数的图象关于直线对称,函数是奇函数,且当时,,则()A.-18 B.-12C.-8 D.-64.已知函数是上的增函数(其中且),则实数的取值范围为()A. B.C. D.5.设函数,则使成立的的取值范围是A. B.C. D.6.函数在上的部分图象如图所示,则的值为A. B.C. D.7.若某商店将进货单价为6元的商品按每件10元出售,则每天可销售100件.现准备采用提高售价、减少进货量的方法来增加利润.已知这种商品的售价每提高1元,销售量就要减少10件,那么要保证该商品每天的利润在450元以上,售价的取值范围是()A. B.C. D.8.已知函数的部分图象如图所示,则将的图象向左平移个单位后,得到的图象对应的函数解析式为()A. B.C. D.9.命题“任意,都有”的否定为()A.存在,使得B.不存在,使得C.存在,使得D.对任意,都有10.一人打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶 B.两次都中靶C.两次都不中靶 D.只有一次中靶11.若,则下列不等式成立的是()A. B.C. D.12.已知,则它们的大小关系是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.在ABC中,H为BC上异于B,C的任一点,M为AH的中点,若,则λ+μ=_________14.已知,则________.15.已知为奇函数,,则____________16.对于函数和,设,,若存在、,使得,则称与互为“零点关联函数”.若函数与互为“零点关联函数”,则实数的取值范围为()A. B. C. D.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知全集,集合,(1)当时,求;(2)如果,求实数的取值范围18.函数()(1)当时,①求函数的单调区间;②求函数在区间的值域;(2)当时,记函数的最大值为,求的表达式19.如图所示,四棱锥中,底面为矩形,平面,,点为的中点()求证:平面()求证:平面平面20.已知函数(1)求的最小正周期;(2)求的单调递增区间21.已知函数为奇函数.(1)求实数a的值;(2)求的值.22.设函数.(1)求函数在上的最小值;(2)若方程在上有四个不相等实根,求的范围.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、A【解析】利用向量坐标求模得方法,用表示,然后利用三角函数分析最小值【详解】因为,所以,因为,所以,故的最小值为.故选A【点睛】本题将三角函数与向量综合考察,利用三角函数得有界性,求模长得最值2、C【解析】分别判断每个函数的定义域和奇偶性即可.【详解】对A,的定义域为,故A错误;对B,是偶函数,故B错误;对C,令,的定义域为,且,所以为奇函数,故C正确.对D,的定义域为,故D错误.故选:C.3、D【解析】首先根据题意得到,再根据的奇偶性求解即可.【详解】由题知:,所以当时,,又因为函数是奇函数,所以.故选:D4、D【解析】利用对数函数、一次函数的性质判断的初步取值范围,再由整体的单调性建立不等式,构造函数,利用函数的单调性求解不等式,从求得的取值范围.【详解】由题意必有,可得,且,整理为.令由换底公式有,由函数为增函数,可得函数为增函数,注意到,所以由,得,即,实数a的取值范围为故选:D.5、A【解析】,定义域为,∵,∴函数为偶函数,当时,函数单调递增,根据偶函数性质可知:得成立,∴,∴,∴的范围为故答案为A.考点:抽象函数的不等式.【思路点晴】本题考查了偶函数的性质和利用偶函数图象的特点解决实际问题,属于基础题型,应牢记.根据函数的表达式可知函数为偶函数,根据初等函数的性质判断函数在大于零的单调性为递增,根据偶函数关于原点对称可知,距离原点越远的点,函数值越大,把可转化为,解绝对值不等式即可6、C【解析】由图象最值和周期可求得和,代入可求得,从而得到函数解析式,代入可求得结果.【详解】由图象可得:,代入可得:本题正确选项:【点睛】本题考查三角函数值的求解,关键是能够根据正弦函数的图象求解出函数的解析式.7、B【解析】根据题意列出函数关系式,建立不等式求解即可.【详解】设售价为,利润为,则,由题意,即,解得,即售价应定为元到元之间,故选:B.8、C【解析】根据给定图象求出函数的解析式,再平移,代入计算作答.【详解】观察图象得,令函数周期为,有,解得,则,而当时,,则有,又,则,因此,,将的图象向左平移个单位得:,所以将的图象向左平移个单位后,得到的图象对应的函数解析式为.故选:C9、A【解析】根据全称量词命题的否定为特称量词命题,改量词,否结论,即得答案.【详解】命题“任意,都有”的否定为“存在,使得”,故选:A10、C【解析】根据互斥事件定义依次判断各个选项即可.【详解】对于A,若恰好中靶一次,则“至少有一次中靶”与“至多有一次中靶”同时发生,不是互斥事件,A错误;对于B,若两次都中靶,则“至少有一次中靶”与“两次都中靶”同时发生,不是互斥事件,B错误;对于C,若两次都不中靶,则“至少有一次中靶”与“两次都不中靶”不能同时发生,是互斥事件,C正确;对于D,若只有一次中靶,则“至少有一次中靶”与“只有一次中靶”同时发生,不是互斥事件,D错误.故选:C.11、D【解析】根据不等式的性质逐项判断可得答案.【详解】对于A,因为,,故,故A错误对于B,因为,,故,故,故B错误对于C,取,易得,故C错误对于D,因为,所以,故D正确故选:D12、B【解析】根据幂函数、指数函数性质判断大小关系.【详解】由,所以.故选:B二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、##0.5【解析】根据题意,用表示出与,求出λ、μ的值即可【详解】设,则=(1﹣k)+k=,∴故答案为:14、【解析】将未知角化为已知角,结合三角恒等变换公式化简即可.【详解】解:因为,所以.故答案为:.【点睛】三角公式求值中变角的解题思路(1)当“已知角”有两个时,“所求角”一般表示为两个“已知角”的和或差的形式;(2)当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,再应用诱导公式把“所求角”变成“已知角”.15、【解析】根据奇偶性求函数值.【详解】因为奇函数,,所以.故答案为:.16、C【解析】先求得函数的零点为,进而可得的零点满足,由二次函数的图象与性质即可得解.【详解】由题意,函数单调递增,且,所以函数的零点为,设的零点为,则,则,由于必过点,故要使其零点在区间上,则或,即或,所以,故选:C.【点睛】关键点点睛:解决本题的关键是将题目条件转化为函数零点的范围,再由二次函数的图象与性质即可得解.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)或;(2)(-∞,2).【解析】先解出集合A(1)时,求出B,再求和;(2)把转化为,分和进行讨论.【详解】(1)当时,,∴∴或.(2)∵,∴.当时,有,解得:;当时,因为,只需,解得:;综上:,故实数的取值范围(-∞,2).【点睛】(1)集合的交并补运算:①离散型的数集用韦恩图;②连续型的数集用数轴;(2)由求参数的范围容易漏掉的情况18、(1)①的单调递增区间为,;单调递减区间为;②(2)【解析】(1)①分别在和两种情况下,结合二次函数的单调性可确定结果;②根据①中单调性可确定最值点,由最值可确定值域;(2)分别在、、三种情况下,结合二次函数对称轴位置与端点值的大小关系可确定最大值,由此得到.【小问1详解】当时,;①当时,,在上单调递增;当时,,在上单调递减,在上单调递增;综上所述:的单调递增区间为,;单调递减区间为②由①知:在上单调递增,在上单调递减,在上单调递增,,;,,,,,,在上的值域为.【小问2详解】由题意得:①当,即时,,对称轴为;当,即时,在上单调递增,;当,即时,在上单调递增,在上单调递减,;②当,即时,若,;若,;当时,,对称轴,在上单调递增,;③当,即时在上单调递增,在上单调递减,在上单调递增,,若,即时,;若,即时,;综上所述:.19、(1)证明见解析;(2)证明见解析.【解析】(1)连接交于,连接.利用几何关系可证得,结合线面平行的判断定理则有直线平面(2)利用线面垂直的定义有,结合可证得平面,则,由几何关系有,则平面,利用面面垂直的判断定理即可证得平面平面试题解析:()连接交于,连接因为矩形的对角线互相平分,所以在矩形中,是中点,所以在中,是中位线,所以,因为平面,平面,所以平面()因为平面,平面,所以;在矩形中有,又,所以平面,因为平面,所以;由已知,三角形是等腰直角三角形,是斜边的中点,所以,因为,所以平面,因为平面,所以平面平面20、(1)(2)单调递增区间是【解析】(1)根据公式可求函数的最小正周期;(2)利用整体法可求函数的增区间.【小问1详解】∵,∴最小正周期【小问2详解】令,解得,∴的单调递增区间是21、(1)(2)【解析】(1)由奇函数定义求;(2)代入后结合对数恒等式计算【详解】(1)因为函数为奇函数,所以恒成立,可得.(2)由(1)可得.所以.【点睛】本题考查函数的奇偶性,考查对数恒等式,属于基础题22、(1)见解析;(2)【解析】(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论