版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年陕西宝鸡金台区高一数学第一学期期末监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数的零点所在区间为()A. B.C. D.2.在空间直角坐标系中,已知球的球心为,且点在球的球面上,则球的半径为()A.4 B.5C.16 D.253.已知函数则=()A. B.9C. D.4.若均大于零,且,则的最小值为()A. B.C. D.5.已知平面直角坐标系中,的顶点坐标分别为,,,G为所在平面内的一点,且满足,则G点的坐标为()A. B.C. D.6.一个多面体的三视图分别为正方形、等腰三角形和矩形,如图所示,则该多面体的体积为A.24cm3 B.48cm3C.32cm3 D.96cm37.已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则()A.{−2,3} B.{−2,2,3}C.{−2,−1,0,3} D.{−2,−1,0,2,3}8.若函数在定义域上的值域为,则()A. B.C. D.9.已知函数对任意实数都满足,若,则A.-1 B.0C.1 D.210.已知定义域为的函数满足:,且,当时,,则等于()A B.C.2 D.411.圆x2+y2+2x﹣4y+1=0的半径为()A.1 B.C.2 D.412.已知,则下列选项中正确的是()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知弧长为cm2的弧所对的圆心角为,则这条弧所在的扇形面积为_____cm214.已知,点在直线上,且,则点的坐标为________15.已知点是角终边上任一点,则__________16.如图所示,正方体的棱长为,线段上有两个动点,且,则下列结论中正确的是_____①∥平面;②平面⊥平面;③三棱锥的体积为定值;④存在某个位置使得异面直线与成角°三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.计算下列各式:(1);(2)18.已知函数,(1)当时,求的最值;(2)若在区间上是单调函数,求实数a取值范围19.如图所示,某居民小区内建一块直角三角形草坪,直角边米,米,扇形花坛是草坪的一部分,其半径为20米,为了便于居民平时休闲散步,该小区物业管理公司将在这块草坪内铺设两条小路和,考虑到小区整体规划,要求M、N在斜边上,O在弧上(点O异于D,E两点),,.(1)设,记,求的表达式,并求出此函数的定义域.(2)经核算,两条路每米铺设费用均为400元,如何设计的大小,使铺路的总费用最低?并求出最低总费用.20.如图,三棱柱中,,,,为的中点,且.(1)求证:平面;(2)求与平面所成角的大小.21.英国数学家泰勒发现了如下公式:,其中,此公式有广泛的用途,例如利用公式得到一些不等式:当时,,.(1)证明:当时,;(2)设,若区间满足当定义域为时,值域也为,则称为的“和谐区间”.(i)时,是否存在“和谐区间”?若存在,求出的所有“和谐区间”,若不存在,请说明理由;(ii)时,是否存在“和谐区间”?若存在,求出的所有“和谐区间”,若不存在,请说明理由.22.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度(单位:千克/年)是养殖密度(单位:尾/立方米)的函数.当时(尾/立方米)时,的值为2(千克/年);当时,是的一次函数;当(尾/立方米)时,因缺氧等原因,的值为0(千克/年).(1)当时,求函数的表达式;(2)当为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大,并求出最大值.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、B【解析】由零点存在定理判定可得答案.【详解】因为在上单调递减,且,,所以的零点所在区间为故选:B2、B【解析】根据空间中两点间距离公式,即可求得球的半径.【详解】球的球心为,且点在球的球面上,所以设球的半径为则.故选:B【点睛】本题考查了空间中两点间距离公式的简单应用,属于基础题.3、A【解析】根据函数的解析式求解即可.【详解】,所以,故选A4、D【解析】由题可得,利用基本不等式可求得.【详解】均大于零,且,,当且仅当,即时等号成立,故的最小值为.故选:D.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.5、A【解析】利用向量的坐标表示以及向量坐标的加法运算即可求解.【详解】由题意易得,,,.即G点的坐标为,故选:A.6、B【解析】由三视图可知该几何体是一个横放的直三棱柱,利用所给的数据和直三棱柱的体积公式即可求得体积.【详解】由三视图可知该几何体是一个横放的直三棱柱,底面为等腰三角形,底边长为,底面三角形高为,所以其体积为:.故选:B【点睛】本题考查三视图及几何体体积计算,认识几何体的几何特征是解题的关键,属于基础题.7、A【解析】首先进行并集运算,然后计算补集即可.【详解】由题意可得:,则.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.8、A【解析】的对称轴为,且,然后可得答案.【详解】因为的对称轴为,且所以若函数在定义域上的值域为,则故选:A9、A【解析】由题意首先确定函数的周期性,然后结合所给的关系式确定的值即可.【详解】由可得,据此可得:,即函数是周期为2的函数,且,据此可知.本题选择A选项.【点睛】本题主要考查函数的周期性及其应用等知识,意在考查学生的转化能力和计算求解能力.10、A【解析】根据函数的周期性以及奇偶性,结合已知函数解析式,代值计算即可.【详解】因为函数满足:,且,故是上周期为的偶函数,故,又当时,,则,故.故选:A.11、C【解析】将圆的方程化为标准方程即可得圆的半径.【详解】由圆x2+y2+2x﹣4y+1=0化为标准方程有:,所以圆的半径为2.故选:C【点睛】本题考查圆的一般方程与标准方程的互化,并由此得出圆的半径大小,属于基础题.12、A【解析】计算的取值范围,比较范围即可.【详解】∴,,.∴.故选:A.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】先求出半径,再用扇形面积公式求解即可.【详解】由已知半径为,则这条弧所在的扇形面积为.故答案为:.14、,【解析】设点,得出向量,代入坐标运算即得的坐标,得到关于的方程,从而可得结果.【详解】设点,因为点在直线,且,,或,,即或,解得或;即点的坐标是,.【点睛】本题考查了平面向量线性运算的坐标表示以及平面向量的共线问题,意在考查对基础知识的掌握与应用,是基础题.15、##【解析】将所求式子,利用二倍角公式和平方关系化为,然后由商数关系弦化切,结合三角函数的定义即可求解.【详解】解:因为点是角终边上任一点,所以,所以,故答案为:.16、①②③④【解析】在①中,由EF∥BD,得EF∥平面ABCD;在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,从而得到面ACF⊥平面BEF;在③中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,从而三棱锥E﹣ABF的体积为定值;在④中,令上底面中心为O,得到存在某个位置使得异面直线AE与BF成角30°【详解】由正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E、F,且,知:在①中,由EF∥BD,且EF⊄平面ABCD,BD⊂平面ABCD,得EF∥平面ABCD,故①正确;在②中,连接BD,由AC⊥BD,AC⊥DD1,可知AC⊥面BDD1B1,而BE⊂面BDD1B1,BF⊂面BDD1B1,∴AC⊥平面BEF,∵AC⊂平面ACF,∴面ACF⊥平面BEF,故②正确;在③中,三棱锥E﹣ABF的体积与三棱锥A﹣BEF的体积相等,三棱锥A﹣BEF的底面积和高都是定值,故三棱锥E﹣ABF的体积为定值,故③正确;在④中,令上底面中心为O,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,可求解∠OBC1=300,故存在某个位置使得异面直线AE与BF成角30°,故④正确故答案为①②③④【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,属于中档题三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)-37(2)0【解析】(1)利用对数的性质以及有理数指数幂的性质,算出结果;(2)利用诱导公式算出三角函数值试题解析:(1)原式;(2),,所以原式18、(1),.(2)【解析】(1)利用二次函数的性质求的最值即可.(2)由区间单调性,结合二次函数的性质:只需保证已知区间在对称轴的一侧,即可求a的取值范围【小问1详解】当时,,∴在上单凋递减,在上单调递增,∴,.【小问2详解】,∴要使在上为单调函数,只需或,解得或∴实数a的取值范围为19、(1),;(2),.【解析】(1)过作的垂线交与两点,求出,即可求出的表达式,并求出此函数的定义域.(2)利用辅助角公式化简,即可得出结果.【详解】(1)如图,过作的垂线交与两点,则,,,,,则,,所以,,(2),,当,即时,总费用最少为.20、(1)证明见解析(2)【解析】(1)连结与交于点,连结,由中位线定理可得,再根据线面平行的判定定理即可证明结果;(2)方法一:根据线面垂直的判定定理,可证明平面;取的中点,易证平面,所以即所求角,再根据直棱柱的有关性质求即可得到结果;方法二:根据线面垂直的判定定理,可证明平面;取的中点,易证平面;所以即与平面所成的角,再根据直棱柱的有关性质求即可得到结果.【小问1详解】证明:如图一,连结与交于点,连结.在中,、为中点,∴.又平面,平面,∴平面.图一【小问2详解】证明:(方法一)如图二,图二∵,为的中点,∴.又,,∴平面.取的中点,又为的中点,∴、、平行且相等,∴四边形是平行四边形,∴与平行且相等.又平面,∴平面,∴即所求角.由前面证明知平面,∴,又,,∴平面,∴此三棱柱为直棱柱.设∴,,,.(方法二)如图三,图三∵,为的中点,∴.又,,∴平面.取的中点,则,∴平面.∴即与平面所成的角.由前面证明知平面,∴,又,,∴平面,∴此三棱柱为直棱柱.设,∴,,∴.21、(1)证明见解析(2)(i)不存在“和谐区间”,理由见解析(ii)存在,有唯一的“和谐区间”【解析】(1)利用来证得结论成立.(2)(i)通过证明方程只有一个实根来判断出此时不存在“和谐区间”.(ii)对的取值进行分类讨论,结合的单调性以及(1)的结论求得唯一的“和谐区间”.【小问1详解】由已知当时,,得,所以当时,.【小问2详解】(i)时,假设存在,则由知,注意到,故,所以在单调递增,于是,即是方程的两个不等实根,易知不是方程的根,由已知,当时,,令,则有时,,即,故方程只有一个实根0,故不存在“和谐区间”.(ii)时,假设存在,则由知若,则由,知,与值域是矛盾,故不存在“和谐区间”,同理,时,也不存在,下面讨论,若,则,故最小值为,于是,所以,所以最大值为2,故,此时的定义域为,值域为,符合题意.若,当时,同理可得,舍去,当时,在上单调递减,所以,于是,若即,则,故,与矛盾;若,同理,矛盾,所以,即,由(1)知当时,,因为,所以,从而,,从而,矛盾,综上所述,有唯一的“和谐区间”.【点睛】对于“新定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年转向系统:齿轮投资申请报告
- 2023年洁厕剂资金申请报告
- 2024年智能电能表及配件项目资金需求报告代可行性研究报告
- 一年级数学计算题专项练习集锦
- 国庆节放假前校长安全教育讲话稿
- 方舱项目可行性研究报告
- 2024年育儿嫂全天候服务劳动协议
- 2024年企业劳动派遣协议
- 2024年化博物馆建设协议样本
- 2024年度封山育林工程承包协议样本
- 20世纪时尚流行文化智慧树知到期末考试答案章节答案2024年浙江理工大学
- (高清版)JTGT 3331-04-2023 多年冻土地区公路设计与施工技术规范
- 六年级语文上册06.第六单元教学导读
- 「」初中人教版七年级英语常用方位介词和短语巩固练习
- 机器人学课程教学大纲
- 基于PLC的谷物烘干机控制系统设计--程序代码-附 录
- 社区治安巡逻队工作方案
- GHTF—质量管理体系--过程验证指南中文版
- 信用社(银行)借新还旧申请书(精编版)
- (完整版)苏教版五年级数学上册知识点归纳总结
- lampsite LTE 站点配置指导v1.1
评论
0/150
提交评论