版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年北京市西城区第三中学高一数学第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.甲乙两名同学6次考试的成绩统计如右图,甲乙两组数据的平均数分别为,标准差分别为则A. B.C. D.2.若函数的图象上存在一点满足,且,则称函数为“可相反函数”,在①;②;③;④中,为“可相反函数”的全部序号是()A.①② B.②③C.①③④ D.②③④3.下列说法中,正确的是()A.若,则B.函数与函数是同一个函数C.设点是角终边上的一点,则D.幂函数的图象过点,则4.已知,求().A.6 B.7C.8 D.95.缪天荣,浙江人,著名眼科专家、我国眼视光学的开拓者.上世纪年代,我国使用“国际标准视力表”检测视力,采用“小数记录法”记录视力数据,缪天荣发现其中存在不少缺陷.经过年苦心研究,年,他成功研制出“对数视力表”及“分记录法”.这是一种既符合视力生理又便于统计和计算的视力检测系统,使中国的眼视光学研究站在了世界的巅峰.“分记录法”将视力和视角(单位:)设定为对数关系:.如图,标准对数视力表中最大视标的视角为,则对应的视力为.若小明能看清的某行视标的大小是最大视标的(相应的视角为),取,则其视力用“分记录法”记录()A. B.C. D.6.已知是偶函数,它在上是减函数.若,则的取值范围是()A. B.C. D.7.命题“,”的否定为()A., B.,C, D.,8.已知函数在[2,3]上单调递减,则实数a的取值范围是()A. B.C. D.9.已知方程,在区间(-2,0)上的解可用二分法求出,则的取值范围是A.(-4,0) B.(0,4)C.[-4,0] D.[0,4]10.在平行四边形中,,则()A. B.C.2 D.411.函数的图象是()A. B.C. D.12.将化为弧度为A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.如图,在平面直角坐标系中,圆,点,点是圆上的动点,线段的垂直平分线交线段于点,设分别为点的横坐标,定义函数,给出下列结论:①;②是偶函数;③在定义域上是增函数;④图象的两个端点关于圆心对称;⑤动点到两定点的距离和是定值.其中正确的是__________14.若函数的图象过点,则函数的图象一定经过点________.15.一个圆锥的侧面展开图是半径为3,圆心角为的扇形,则该圆锥的体积为________.16.已知等差数列的前项和为,,则__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知幂函数为偶函数(1)求的解析式;(2)若函数在区间(2,3)上为单调函数,求实数的取值范围18.已知点是圆内一点,直线.(1)若圆的弦恰好被点平分,求弦所在直线的方程;(2)若过点作圆的两条互相垂直的弦,求四边形的面积的最大值;(3)若,是上的动点,过作圆的两条切线,切点分别为.证明:直线过定点.19.在中,顶点,,BC边所在直线方程为.(1)求过点A且平行于BC的直线方程;(2)求线段AB的垂直平分线方程.20.已知函数,若同时满足以下条件:①在D上单调递减或单调递增;②存在区间,使在上的值域是,那么称为闭函数(1)求闭函数符合条件②的区间;(2)判断函数是不是闭函数?若是请找出区间;若不是请说明理由;(3)若是闭函数,求实数的取值范围21.对于两个函数:和,的最大值为M,若存在最小的正整数k,使得恒成立,则称是的“k阶上界函数”.(1)若,是的“k阶上界函数”.求k的值;(2)已知,设,,.(i)求的最小值和最大值;(ii)求证:是的“2阶上界函数”.22.我们知道:设函数的定义域为,那么“函数的图象关于原点成中心对称图形”的充要条件是“,”.有同学发现可以将其推广为:设函数的定义域为,那么“函数的图象关于点成中心对称图形”的充要条件是“,”.(1)判断函数的奇偶性,并证明;(2)判断函数的图象是否为中心对称图形,若是,求出其对称中心坐标;若不是,说明理由.
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】利用甲、乙两名同学6次考试的成绩统计直接求解【详解】由甲乙两名同学6次考试的成绩统计图知:甲组数据靠上,乙组数据靠下,甲组数据相对集中,乙组数据相对分散分散布,由甲乙两组数据的平均数分别为,标准差分别为得,故选【点睛】本题考查命题真假的判断,考查平均数、的定义和性质等基础知识,考查运算求解能力,是基础题2、D【解析】根据已知条件把问题转化为函数与直线有不在坐标原点的交点,结合图象即可得到结论.【详解】解:由定义可得函数为“可相反函数”,即函数与直线有不在坐标原点的交点①的图象与直线有交点,但是交点在坐标原点,所以不是“可相反函数”;②的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”;③与直线有交点在第二象限,且交点不在坐标原点,所以是“可相反函数”;④的图象与直线有交点在第四象限,且交点不在坐标原点,所以是“可相反函数”.结合图象可得:只有②③④符合要求;故选:D3、D【解析】A选项,举出反例;B选项,两函数定义域不同;C选项,利用三角函数定义求解;D选项,待定系数法求出解析式,从而得到答案.【详解】A选项,当时,满足,而,故A错误;B选项,定义域为R,定义域为,两者不是同一个函数,B错误;C选项,,C错误;D选项,设,将代入得:,解得:,所以,D正确.故选:D4、B【解析】利用向量的加法规则求解的坐标,结合模长公式可得.【详解】因为,所以,所以.故选:B.【点睛】本题主要考查平面向量的坐标运算,明确向量的坐标运算规则是求解的关键,侧重考查数学运算的核心素养.5、C【解析】将代入,求出的值,即可得解.【详解】将代入函数解析式可得.故选:C.6、C【解析】根据偶函数的性质结合单调性可得,即可根据对数函数单调性解出不等式.【详解】由于函数是偶函数,由得,又因为函数在上是减函数,所以在上是增函数,则,即,解得.故选:C.7、B【解析】根据特称命题的否定为全称命题可得.【详解】根据特称命题的否定为全称命题,可得命题“,”的否定为“,”故选:B.8、C【解析】根据复合函数的单调性法则“同增异减”求解即可.【详解】由于函数在上单调递减,在定义域内是增函数,所以根据复合函数的单调性法则“同增异减”得:在上单调递减,且,所以且,解得:.故的取值范围是故选:C.9、B【解析】根据零点存在性定理,可得,求解即可.【详解】因为方程在区间(-2,0)上的解可用二分法求出,所以有,解得.故选B【点睛】本题主要考查零点的存在性定理,熟记定理即可,属于基础题型.10、B【解析】由条件根据两个向量的加减法的法则,以及其几何意义,可得,,然后转化求解即可【详解】可得,,两式平方相加可得故选:11、C【解析】由已知可得,从而可得函数图象【详解】对于y=x+,当x>0时,y=x+1;当x<0时,y=x-1.即,故其图象应为C.故选:C12、D【解析】根据角度制与弧度制的关系求解.【详解】因为,所以.故选:D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、③④⑤【解析】对于①,当即轴,线段的垂直平分线交线段于点,显然不在BD上,所以所以①不对;对于②,由于,不关于原点对称,所以不可能是偶函数,所以①不对;对于③,由图形知,点D向右移动,点F也向右移动,在定义域上是增函数,正确;对于④,由图形知,当D移动到圆A与x轴的左右交点时,分别得到函数图象的左端点(−7,−3),右端点(5,3),故f(n)图象的两个端点关于圆心A(-1,0)对称,正确;对于⑤,由垂直平分线性质可知,所以,正确.故答案为③④⑤.14、【解析】函数的图象可以看作的图象先关于轴对称,再向右平移4个单位得到,先求出关于轴的对称点,再向右平移4个单位即得.【详解】由题得,函数的图象先关于轴对称,再向右平移个单位得函数,点关于轴的对称点为,向右平移4个单位是,所以函数图象一定经过点.故答案为:.【点睛】本题主要考查函数的平移变换和对称变换,考查了分析能力,属于基础题.15、.【解析】先求圆锥底面圆的半径,再由直角三角形求得圆锥的高,代入公式计算圆锥的体积即可。【详解】设圆锥底面半径为r,则由题意得,解得.∴底面圆的面积为.又圆锥的高.故圆锥的体积.【点睛】此题考查圆锥体积计算,关键是找到底面圆半径和高代入计算即可,属于简单题目。16、161【解析】由等差数列的性质可得,即可求出,又,带入数据,即可求解【详解】由等差数列的性质可得=,所以,又由等差数列前n项和公式得【点睛】本题考查等差数列的性质及前n项和公式,属基础题三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1);(2)或.【解析】(1)由为幂函数知,得或又因为函数为偶函数,所以函数不符合舍去当时,,符合题意;.(2)由(1)得,即函数的对称轴为,由题意知在(2,3)上为单调函数,所以或,即或.18、(1)(2)11(3)见解析【解析】(1)由题意知,易知,进而得到弦所在直线的方程;(2)设点到直线、的距离分别为,则,,利用条件二元变一元,转为二次函数最值问题;(3)设.该圆的方程为,利用C、D在圆O:上,求出CD方程,利用直线系求解即可试题解析:(1)由题意知,∴,∵,∴,因此弦所在直线方程为,即.(2)设点到直线、的距离分别为,则,,.∴,,当时取等号.所以四边形面积的最大值为11.(3)由题意可知、两点均在以为直径的圆上,设,则该圆的方程为,即:.又、在圆上,所以直线的方程为,即,由得,所以直线过定点.19、(1)(2)【解析】(1)利用点斜式求得过点A且平行于BC的直线方程.(2)根据中点坐标、线段AB的垂直平分线的斜率求得正确答案.【小问1详解】直线的斜率为,所以过点A且平行于BC的直线方程为.【小问2详解】线段的中点为,直线的斜率为,所以线段AB的垂直平分线的斜率为,所以线段AB的垂直平分线为.20、(1),;(2)见解析;(3)【解析】(1)由在R上单减,列出方程组,即可求的值;(2)由函数y=2x+lgx在(0,+∞)单调递增可知即,结合对数函数的单调性可判断(3)易知在[﹣2,+∞)上单调递增.设满足条件B的区间为[a,b],则方程组有解,方程至少有两个不同的解,即方程x2﹣(2k+1)x+k2﹣2=0有两个都不小于k的不根.结合二次方程的实根分布可求k的范围【详解】解:(1)∵在R上单减,所以区间[a,b]满足,解得a=﹣1,b=1(2)∵函数y=2x+lgx在(0,+∞)单调递增假设存在满足条件的区间[a,b],a<b,则,即∴lgx=﹣x在(0,+∞)有两个不同的实数根,但是结合对数函数的单调性可知,y=lgx与y=﹣x只有一个交点故不存在满足条件的区间[a,b],函数y=2x+lgx是不是闭函数(3)易知在[﹣2,+∞)上单调递增设满足条件B的区间为[a,b],则方程组有解,方程至少有两个不同的解即方程x2﹣(2k+1)x+k2﹣2=0有两个都不小于k的不根∴得,即所求【点睛】本题主要考查了函数的单调性的综合应用,函数与方程的综合应用问题,其中解答中根据函数与方程的交点相互转化关系,合理转化为二次函数的图象与性质的应用是解答的关键,着重考查了函数知识及数形结合思想的应用,以及转化思想的应用,试题有较强的综合性,属于难题.21、(1);(2)(i)时,,;时,,;时,,;(ii)证明部分见解析.【解析】(1)先求,的范围,再求的最大值,利用恒成立问题的方式处理;(2)分类讨论对称轴是否落在上即可;先求的最大值,需观察发现最值在取得,不要尝试用三倍角公式,另外的最大值必定在端点或者在顶点处取得,通过讨论的范围,证明即可【小问1详解】时,单调递增,于是,于是,则最大值为,又恒成立,故,注意到是正整数,于是符合要求的为.【小问2详解】(i)依题意得,为开口向上,对称轴为的二次函数,于是在上递减,在上递增,由于,,下分类讨论:当,即时,,;当,即时,,;当,即当,在上递减,,.(ii),则,当,即取等号,,,则,下令,只需说明时,即可,分类如下:当时,,且注意到,此时,显然时,单调递减,于是;当,由基本不等式,,且,,即,此时,而,时,由基本不等式,,故有:综上,时,,即当时,最小正整数【点睛】本题综合的考查了分类讨论思想,函数值域的求法等问题,特别是观察分析出的最大值,若用三倍角公式反倒会变得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年转向系统:齿轮投资申请报告
- 2023年洁厕剂资金申请报告
- 2024年智能电能表及配件项目资金需求报告代可行性研究报告
- 一年级数学计算题专项练习集锦
- 国庆节放假前校长安全教育讲话稿
- 方舱项目可行性研究报告
- 2024年育儿嫂全天候服务劳动协议
- 2024年企业劳动派遣协议
- 2024年化博物馆建设协议样本
- 2024年度封山育林工程承包协议样本
- 20世纪时尚流行文化智慧树知到期末考试答案章节答案2024年浙江理工大学
- (高清版)JTGT 3331-04-2023 多年冻土地区公路设计与施工技术规范
- 六年级语文上册06.第六单元教学导读
- 「」初中人教版七年级英语常用方位介词和短语巩固练习
- 机器人学课程教学大纲
- 基于PLC的谷物烘干机控制系统设计--程序代码-附 录
- 社区治安巡逻队工作方案
- GHTF—质量管理体系--过程验证指南中文版
- 信用社(银行)借新还旧申请书(精编版)
- (完整版)苏教版五年级数学上册知识点归纳总结
- lampsite LTE 站点配置指导v1.1
评论
0/150
提交评论