湖南省长沙市师大附中教育集团第十市级名校2024届中考数学全真模拟试卷含解析_第1页
湖南省长沙市师大附中教育集团第十市级名校2024届中考数学全真模拟试卷含解析_第2页
湖南省长沙市师大附中教育集团第十市级名校2024届中考数学全真模拟试卷含解析_第3页
湖南省长沙市师大附中教育集团第十市级名校2024届中考数学全真模拟试卷含解析_第4页
湖南省长沙市师大附中教育集团第十市级名校2024届中考数学全真模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省长沙市师大附中教育集团第十市级名校2024届中考数学全真模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,矩形ABCD中,AB=3,AD=4,连接BD,∠DBC的角平分线BE交DC于点E,现把△BCE绕点B逆时针旋转,记旋转后的△BCE为△BC′E′.当线段BE′和线段BC′都与线段AD相交时,设交点分别为F,G.若△BFD为等腰三角形,则线段DG长为()A. B. C. D.2.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查3.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.AEEC=BEED B.AE4.一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是()A.x>1 B.x≥1 C.x>3 D.x≥35.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为,当电压为定值时,I关于R的函数图象是()A. B. C. D.6.一元二次方程x2﹣5x﹣6=0的根是()A.x1=1,x2=6 B.x1=2,x2=3 C.x1=1,x2=﹣6 D.x1=﹣1,x2=67.已知反比例函数y=﹣,当1<x<3时,y的取值范围是()A.0<y<1 B.1<y<2 C.﹣2<y<﹣1 D.﹣6<y<﹣28.已知一组数据,,,,的平均数是2,方差是,那么另一组数据,,,,,的平均数和方差分别是.A. B. C. D.9.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1 B.5.6×10﹣2 C.5.6×10﹣3 D.0.56×10﹣110.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼二、填空题(共7小题,每小题3分,满分21分)11.可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是__________.12.据国家旅游局数据中心综合测算,2018年春节全国共接待游客3.86亿人次,将“3.86亿”用科学计数法表示,可记为____________.13.已知:如图,矩形ABCD中,AB=5,BC=3,E为AD上一点,把矩形ABCD沿BE折叠,若点A恰好落在CD上点F处,则AE的长为_____.14.从-5,-,-,-1,0,2,π这七个数中随机抽取一个数,恰好为负整数的概率为______.15.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.16.如图,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=______17.如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将△BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP//AB,则AB的长等于________.三、解答题(共7小题,满分69分)18.(10分)某水果批发市场香蕉的价格如下表购买香蕉数(千克)不超过20千克20千克以上但不超过40千克40千克以上每千克的价格6元5元4元张强两次共购买香蕉50千克,已知第二次购买的数量多于第一次购买的数量,共付出264元,请问张强第一次,第二次分别购买香蕉多少千克?19.(5分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.20.(8分)如图,在平面直角坐标系中,函数的图象与直线交于点A(3,m).求k、m的值;已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.21.(10分)当x取哪些整数值时,不等式与4﹣7x<﹣3都成立?22.(10分)水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?23.(12分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.(I)计算△ABC的边AC的长为_____.(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).24.(14分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.(1)求证:AE=AD.(2)若AE=3,CD=4,求AB的长.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解题分析】

先在Rt△ABD中利用勾股定理求出BD=5,在Rt△ABF中利用勾股定理求出BF=,则AF=4-=.再过G作GH∥BF,交BD于H,证明GH=GD,BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,由GH∥FB,得出=,即可求解.【题目详解】解:在Rt△ABD中,∵∠A=90°,AB=3,AD=4,∴BD=5,在Rt△ABF中,∵∠A=90°,AB=3,AF=4-DF=4-BF,∴BF2=32+(4-BF)2,解得BF=,∴AF=4-=.过G作GH∥BF,交BD于H,∴∠FBD=∠GHD,∠BGH=∠FBG,∵FB=FD,∴∠FBD=∠FDB,∴∠FDB=∠GHD,∴GH=GD,∵∠FBG=∠EBC=∠DBC=∠ADB=∠FBD,又∵∠FBG=∠BGH,∠FBG=∠GBH,∴BH=GH,设DG=GH=BH=x,则FG=FD-GD=-x,HD=5-x,∵GH∥FB,∴=,即=,解得x=.故选A.【题目点拨】本题考查了旋转的性质,矩形的性质,等腰三角形的性质,勾股定理,平行线分线段成比例定理,准确作出辅助线是解题关键.2、D【解题分析】

A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.3、A【解题分析】

利用平行线的性质以及相似三角形的性质一一判断即可.【题目详解】解:∵AB⊥BD,CD⊥BD,EF⊥BD,∴AB∥CD∥EF∴△ABE∽△DCE,∴AEED=AB∵EF∥AB,∴EFAB∴ADDB=AEBF,故选项故选:A.【题目点拨】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、C【解题分析】试题解析:一个关于x的一元一次不等式组的解集在数轴上的表示如图,则该不等式组的解集是x>1.故选C.考点:在数轴上表示不等式的解集.5、C【解题分析】

根据反比例函数的图像性质进行判断.【题目详解】解:∵,电压为定值,∴I关于R的函数是反比例函数,且图象在第一象限,故选C.【题目点拨】本题考查反比例函数的图像,掌握图像性质是解题关键.6、D【解题分析】

本题应对原方程进行因式分解,得出(x-6)(x+1)=1,然后根据“两式相乘值为1,这两式中至少有一式值为1.”来解题.【题目详解】x2-5x-6=1(x-6)(x+1)=1x1=-1,x2=6故选D.【题目点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法.7、D【解题分析】

根据反比例函数的性质可以求得y的取值范围,从而可以解答本题.【题目详解】解:∵反比例函数y=﹣,∴在每个象限内,y随x的增大而增大,∴当1<x<3时,y的取值范围是﹣6<y<﹣1.故选D.【题目点拨】本题考查了反比例函数的性质,解答本题的关键是明确题意,求出相应的y的取值范围,利用反比例函数的性质解答.8、D【解题分析】

根据数据的变化和其平均数及方差的变化规律求得新数据的平均数及方差即可.【题目详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数是3×2-2=4;∵数据x1,x2,x3,x4,x5的方差为,∴数据3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故选D.【题目点拨】本题考查了方差的知识,说明了当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.9、B【解题分析】

0.056用科学记数法表示为:0.056=,故选B.10、B【解题分析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.二、填空题(共7小题,每小题3分,满分21分)11、9.2×10﹣1.【解题分析】

根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2×10﹣1.【题目详解】根据科学记数法的正确表示形式可得:0.00092用科学记数法表示是9.2×10﹣1.故答案为:9.2×10﹣1.【题目点拨】本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.12、3.86×108【解题分析】根据科学记数法的表示(a×10n,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数)形式可得:3.86亿=386000000=3.86×108.故答案是:3.86×108.13、【解题分析】

根据矩形的性质得到CD=AB=5,AD=BC=3,∠D=∠C=90°,根据折叠得到BF=AB=5,EF=EA,根据勾股定理求出CF,由此得到DF的长,再根据勾股定理即可求出AE.【题目详解】∵矩形ABCD中,AB=5,BC=3,∴CD=AB=5,AD=BC=3,∠D=∠C=90°,由折叠的性质可知,BF=AB=5,EF=EA,在Rt△BCF中,CF==4,∴DF=DC﹣CF=1,设AE=x,则EF=x,DE=3﹣x,在Rt△DEF中,EF2=DE2+DF2,即x2=(3﹣x)2+12,解得,x=,故答案为:.【题目点拨】此题考查矩形的性质,勾股定理,折叠的性质,由折叠得到BF的长度是解题的关键.14、【解题分析】

七个数中有两个负整数,故随机抽取一个数,恰好为负整数的概率是:【题目详解】这七个数中有两个负整数:-5,-1

所以,随机抽取一个数,恰好为负整数的概率是:故答案为【题目点拨】本题考查随机事件的概率的计算方法,能准确找出负整数的个数,并熟悉等可能事件的概率计算公式是关键.15、【解题分析】

根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到△AOB的面积即可.【题目详解】∵直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=交于第一象限点C,若BC=2AB,设点C的坐标为(c,)∴OA=0.5c,OB==,∴S△AOB===【题目点拨】此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.16、3【解题分析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,AB=BB'AC'=B'C'∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=2,∴AB=(2∴BD=2×32=3C′D=12∴BC′=BD−C′D=3−1.故答案为:3−1.点睛:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.17、【解题分析】

设CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据△DEP∽△DAB,即可得到,即,可得,即可得到AB的长等于.【题目详解】如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,

由折叠可得,CE=BC,BP=EP,

∴CE2=1-a2,

∴Rt△CDE中,DE2=CE2-CD2=1-2a2,

∵PE∥AB,∠A=90°,

∴∠PED=90°,

∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,

∴PE=a2,

∵PE∥AB,

∴△DEP∽△DAB,

∴,即,

∴,

即a2+a-1=0,

解得(舍去),

∴AB的长等于AB=.故答案为.三、解答题(共7小题,满分69分)18、第一次买14千克香蕉,第二次买36千克香蕉【解题分析】

本题两个等量关系为:第一次买的千克数+第二次买的千克数=50;第一次出的钱数+第二次出的钱数=1.对张强买的香蕉的千克数,应分情况讨论:①当0<x≤20,y≤40;②当0<x≤20,y>40③当20<x<3时,则3<y<2.【题目详解】设张强第一次购买香蕉xkg,第二次购买香蕉ykg,由题意可得0<x<3.则①当0<x≤20,y≤40,则题意可得.解得.②当0<x≤20,y>40时,由题意可得.解得.(不合题意,舍去)③当20<x<3时,则3<y<2,此时张强用去的款项为5x+5y=5(x+y)=5×50=30<1(不合题意,舍去);④当20<x≤40y>40时,总质量将大于60kg,不符合题意,答:张强第一次购买香蕉14kg,第二次购买香蕉36kg.【题目点拨】本题主要考查学生分类讨论的思想.找到两个基本的等量关系后,应根据讨论的千克数找到相应的价格进行作答.19、-【解题分析】

先化简,再解不等式组确定x的值,最后代入求值即可.【题目详解】(﹣)÷,=÷=解不等式组,可得:﹣2<x≤2,∴x=﹣1,0,1,2,∵x=﹣1,0,1时,分式无意义,∴x=2,∴原式==﹣.20、(1)k的值为3,m的值为1;(2)0<n≤1或n≥3.【解题分析】分析:(1)将A点代入y=x-2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.详解:(1)将A(3,m)代入y=x-2,∴m=3-2=1,∴A(3,1),将A(3,1)代入y=,∴k=3×1=3,m的值为1.(2)①当n=1时,P(1,1),令y=1,代入y=x-2,x-2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x-2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∴0<n≤1或n≥3点睛:本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.21、2,1【解题分析】

根据题意得出不等式组,解不等式组求得其解集即可.【题目详解】根据题意得,解不等式①,得:x≤1,解不等式②,得:x>1,则不等式组的解集为1<x≤1,∴x可取的整数值是2,1.【题目点拨】本题考查了解不等式组的能力,根据题意得出不等式组是解题的关键.22、120【解题分析】

设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【题目详解】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【题目点拨】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.23、作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论