版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古鄂尔多斯市河南中学中考数学仿真试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在矩形ABCD中,AB=2a,AD=a,矩形边上一动点P沿A→B→C→D的路径移动.设点P经过的路径长为x,PD2=y,则下列能大致反映y与x的函数关系的图象是()A. B.C. D.2.小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.你认为其中正确信息的个数有A.2个 B.3个 C.4个 D.5个3.直线y=3x+1不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,已知E,B,F,C四点在一条直线上,,,添加以下条件之一,仍不能证明≌的是A. B. C. D.5.下列计算正确的是()A.a2•a3=a6 B.(a2)3=a6 C.a2+a2=a3 D.a6÷a2=a36.2014年我省财政收入比2013年增长8.9%,2015年比2014年增长9.5%,若2013年和2015年我省财政收入分别为a亿元和b亿元,则a、b之间满足的关系式为()A.b=a(1+8.9%+9.5%) B.b=a(1+8.9%×9.5%)C.b=a(1+8.9%)(1+9.5%) D.b=a7.观察下列图形,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.8.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为(
)A.9人 B.10人 C.11人 D.12人9.下列命题是真命题的是()A.如实数a,b满足a2=b2,则a=bB.若实数a,b满足a<0,b<0,则ab<0C.“购买1张彩票就中奖”是不可能事件D.三角形的三个内角中最多有一个钝角10.下图是由八个相同的小正方体组合而成的几何体,其左视图是()A. B. C. D.11.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是()A.m<﹣1 B.m<1 C.m>﹣1 D.m>112.方程x(x-2)+x-2=0的两个根为()A., B.,C., D.,二、填空题:(本大题共6个小题,每小题4分,共24分.)13.关于x的方程(m﹣5)x2﹣3x﹣1=0有两个实数根,则m满足_____.14.如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=__.15.已知关于X的一元二次方程有实数根,则m的取值范围是____________________16.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.17.已知抛物线y=-x2+mx+2-m,在自变量x的值满足-1≤x≤2的情况下.若对应的函数值y的最大值为6,则m的值为__________.18.如图,△ABC中,AB=AC,以AC为斜边作Rt△ADC,使∠ADC=90°,∠CAD=∠CAB=26°,E、F分别是BC、AC的中点,则∠EDF等于__________°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.2014年这种礼盒的进价是多少元/盒?若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?20.(6分)计算:sin30°﹣+(π﹣4)0+|﹣|.21.(6分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值.22.(8分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c经过点C.(1)如图1,若抛物线经过点A和D(﹣2,0).①求点C的坐标及该抛物线解析式;②在抛物线上是否存在点P,使得∠POB=∠BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(2,1),点Q在抛物线上,且满足∠QOB=∠BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围.23.(8分)如图,在△ABC中,AB=AC,点,在边上,.求证:.24.(10分)如图,在▱ABCD中,AE⊥BC交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.25.(10分)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值.26.(12分)某汽车专卖店销售A,B两种型号的汽车.上周销售额为96万元:本周销售额为62万元,销售情况如下表:A型汽车B型汽车上周13本周21(1)求每辆A型车和B型车的售价各为多少元(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?27.(12分)如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B,求证:AC•CD=CP•BP;若AB=10,BC=12,当PD∥AB时,求BP的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】解:(1)当0≤t≤2a时,∵,AP=x,∴;(2)当2a<t≤3a时,CP=2a+a﹣x=3a﹣x,∵,∴=;(3)当3a<t≤5a时,PD=2a+a+2a﹣x=5a﹣x,∵=y,∴=;综上,可得,∴能大致反映y与x的函数关系的图象是选项D中的图象.故选D.2、D【解题分析】试题分析:①如图,∵抛物线开口方向向下,∴a<1.∵对称轴x,∴<1.∴ab>1.故①正确.②如图,当x=1时,y<1,即a+b+c<1.故②正确.③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.④如图,当x=﹣1时,y>1,即a﹣b+c>1,∵抛物线与y轴交于正半轴,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.⑤如图,对称轴,则.故⑤正确.综上所述,正确的结论是①②③④⑤,共5个.故选D.3、D【解题分析】
利用两点法可画出函数图象,则可求得答案.【题目详解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直线与x轴交于点(-,0),与y轴交于点(0,1),其函数图象如图所示,∴函数图象不过第四象限,故选:D.【题目点拨】本题主要考查一次函数的性质,正确画出函数图象是解题的关键.4、B【解题分析】
由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC≌△DEF了.【题目详解】添加,根据AAS能证明≌,故A选项不符合题意.B.添加与原条件满足SSA,不能证明≌,故B选项符合题意;C.添加,可得,根据AAS能证明≌,故C选项不符合题意;D.添加,可得,根据AAS能证明≌,故D选项不符合题意,故选B.【题目点拨】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5、B【解题分析】试题解析:A.故错误.B.正确.C.不是同类项,不能合并,故错误.D.故选B.点睛:同底数幂相乘,底数不变,指数相加.同底数幂相除,底数不变,指数相减.6、C【解题分析】
根据2013年我省财政收入和2014年我省财政收入比2013年增长8.9%,求出2014年我省财政收入,再根据出2015年比2014年增长9.5%,2015年我省财政收为b亿元,即可得出a、b之间的关系式.【题目详解】∵2013年我省财政收入为a亿元,2014年我省财政收入比2013年增长8.9%,∴2014年我省财政收入为a(1+8.9%)亿元,∵2015年比2014年增长9.5%,2015年我省财政收为b亿元,∴2015年我省财政收为b=a(1+8.9%)(1+9.5%);故选C.【题目点拨】此题考查了列代数式,关键是根据题意求出2014年我省财政的收入,是一道基础题.7、C【解题分析】
根据轴对称图形与中心对称图形的概念求解.【题目详解】解:A、既不是轴对称图形,也不是中心对称图形.故本选项错误;B、是轴对称图形,不是中心对称图形.故本选项错误;C、是轴对称图形,也是中心对称图形.故本选项正确;D、既不是轴对称图形,也不是中心对称图形.故本选项错误.故选C.【题目点拨】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、C【解题分析】
设参加酒会的人数为x人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【题目详解】设参加酒会的人数为x人,依题可得:
x(x-1)=55,
化简得:x2-x-110=0,
解得:x1=11,x2=-10(舍去),
故答案为C.【题目点拨】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.9、D【解题分析】
A.两个数的平方相等,这两个数不一定相等,有正负之分即可判断B.同号相乘为正,异号相乘为负,即可判断C.“购买1张彩票就中奖”是随机事件即可判断D.根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断【题目详解】如实数a,b满足a2=b2,则a=±b,A是假命题;数a,b满足a<0,b<0,则ab>0,B是假命题;若实“购买1张彩票就中奖”是随机事件,C是假命题;三角形的三个内角中最多有一个钝角,D是真命题;故选:D【题目点拨】本题考查了命题与定理,根据实际判断是解题的关键10、B【解题分析】
解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.故选B.11、B【解题分析】
根据方程有两个不相等的实数根结合根的判别式即可得出△=4-4m>0,解之即可得出结论.【题目详解】∵关于x的一元二次方程x2-2x+m=0有两个不相等的实数根,∴△=(-2)2-4m=4-4m>0,解得:m<1.故选B.【题目点拨】本题考查了根的判别式,熟练掌握“当△>0时,方程有两个不相等的两个实数根”是解题的关键.12、C【解题分析】
根据因式分解法,可得答案.【题目详解】解:因式分解,得(x-2)(x+1)=0,
于是,得x-2=0或x+1=0,
解得x1=-1,x2=2,
故选:C.【题目点拨】本题考查了解一元二次方程,熟练掌握因式分解法是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、m≥且m≠1.【解题分析】
根据一元二次方程的定义和判别式的意义得到m﹣1≠0且然后求出两个不等式的公共部分即可.【题目详解】解:根据题意得m﹣1≠0且解得且m≠1.故答案为:且m≠1.【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.14、15°【解题分析】
根据平行四边形的性质和圆的半径相等得到△AOB为等边三角形,根据等腰三角形的三线合一得到∠BOF=∠AOF=30°,根据圆周角定理计算即可.【题目详解】解答:连接OB,∵四边形ABCO是平行四边形,∴OC=AB,又OA=OB=OC,∴OA=OB=AB,∴△AOB为等边三角形.∵OF⊥OC,OC∥AB,∴OF⊥AB,∴∠BOF=∠AOF=30°.由圆周角定理得,故答案为15°.15、m≤3且m≠2【解题分析】试题解析:∵一元二次方程有实数根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.16、200【解题分析】
先求出OA的长,再由垂径定理求出AC的长,根据勾股定理求出OC的长,进而可得出结论.【题目详解】解:∵⊙O的直径为1000mm,
∴OA=OA=500mm.
∵OD⊥AB,AB=800mm,
∴AC=400mm,
∴OC===300mm,∴CD=OD-OC=500-300=200(mm).
答:水的最大深度为200mm.故答案为:200【题目点拨】本题考查的是垂径定理的应用,根据勾股定理求出OC的长是解答此题的关键.17、m=8或-【解题分析】
求出抛物线的对称轴x=-b2a=【题目详解】抛物线的对称轴x=-b当m2<-1,即m<-2时,抛物线在-1≤x≤2时,y随x的增大而减小,在x=-1时取得最大值,即y=--1当-1≤m2≤2,即-2≤m≤4时,抛物线在-1≤x≤2时,在x=当m2>2,即m>4时,抛物线在-1≤x≤2时,y随x的增大而增大,在x=2时取得最大值,即y=-2综上所述,m的值为8或-故答案为:8或-【题目点拨】考查二次函数的图象与性质,注意分类讨论,不要漏解.18、【解题分析】E、F分别是BC、AC的中点.,∠CAB=26°又∠CAD=26°!三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)35元/盒;(2)20%.【解题分析】
试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:,解得:x=35,经检验,x=35是原方程的解.答:2014年这种礼盒的进价是35元/盒.(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).答:年增长率为20%.考点:一元二次方程的应用;分式方程的应用;增长率问题.20、1.【解题分析】分析:原式利用特殊角角的三角函数值,平方根定义,零指数幂法则,以及绝对值的代数意义化简,计算即可求出值.详解:原式=﹣2+1+=1.点睛:本题考查了实数的运算,熟练掌握运算法则是解答本题的关键.21、(1)见解析;(2)m=-1.【解题分析】
(1)根据方程的系数结合根的判别式,即可得出△=1>1,由此即可证出:无论实数m取什么值,方程总有两个不相等的实数根;
(2)利用分解因式法解原方程,可得x1=m,x2=m+1,在根据已知条件即可得出结论.【题目详解】(1)∵△=(m+3)2﹣4(m+2)=(m+1)2∴无论m取何值,(m+1)2恒大于等于1∴原方程总有两个实数根(2)原方程可化为:(x-1)(x-m-2)=1∴x1=1,x2=m+2∵方程两个根均为正整数,且m为负整数∴m=-1.【题目点拨】本题考查了一元二次方程与根的判别式,解题的关键是熟练的掌握根的判别式与根据因式分解法解一元二次方程.22、(1)①y=﹣x2+x+3;②P(,)或P'(,﹣);(2)≤a<1;【解题分析】
(1)①先判断出△AOB≌△GBC,得出点C坐标,进而用待定系数法即可得出结论;②分两种情况,利用平行线(对称)和直线和抛物线的交点坐标的求法,即可得出结论;(2)同(1)②的方法,借助图象即可得出结论.【题目详解】(1)①如图2,∵A(1,3),B(1,1),∴OA=3,OB=1,由旋转知,∠ABC=91°,AB=CB,∴∠ABO+∠CBE=91°,过点C作CG⊥OB于G,∴∠CBG+∠BCG=91°,∴∠ABO=∠BCG,∴△AOB≌△GBC,∴CG=OB=1,BG=OA=3,∴OG=OB+BG=4∴C(4,1),抛物线经过点A(1,3),和D(﹣2,1),∴,∴,∴抛物线解析式为y=﹣x2+x+3;②由①知,△AOB≌△EBC,∴∠BAO=∠CBF,∵∠POB=∠BAO,∴∠POB=∠CBF,如图1,OP∥BC,∵B(1,1),C(4,1),∴直线BC的解析式为y=x﹣,∴直线OP的解析式为y=x,∵抛物线解析式为y=﹣x2+x+3;联立解得,或(舍)∴P(,);在直线OP上取一点M(3,1),∴点M的对称点M'(3,﹣1),∴直线OP'的解析式为y=﹣x,∵抛物线解析式为y=﹣x2+x+3;联立解得,或(舍),∴P'(,﹣);(2)同(1)②的方法,如图3,∵抛物线y=ax2+bx+c经过点C(4,1),E(2,1),∴,∴,∴抛物线y=ax2﹣6ax+8a+1,令y=1,∴ax2﹣6ax+8a+1=1,∴x1×x2=∵符合条件的Q点恰好有2个,∴方程ax2﹣6ax+8a+1=1有一个正根和一个负根或一个正根和1,∴x1×x2=≤1,∵a<1,∴8a+1≥1,∴a≥﹣,即:﹣≤a<1.【题目点拨】本题是二次函数综合题,考查了待定系数法,全等三角形的判定和性质,平行线的性质,对称的性质,解题的关键是求出直线和抛物线的交点坐标.23、见解析【解题分析】试题分析:证明△ABE≌△ACD即可.试题解析:法1:∵AB=AC,∴∠B=∠C,∵AD=CE,∴∠ADE=∠AED,∴△ABE≌△ACD,∴BE=CD,∴BD=CE,法2:如图,作AF⊥BC于F,∵AB=AC,∴BF=CF,∵AD=AE,∴DF=EF,∴BF-DF=CF-EF,即BD=CE.24、证明见解析.【解题分析】试题分析:先由平行四边形的性质得到∠B=∠D,AB=CD,再利用垂直的定义得到∠AEB=∠GFD=90°,根据“ASA”判定△AEB≌△GFD,从而得到AB=DC,所以有DG=DC.试题解析:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.考点:1.全等三角形的判定与性质;2.平行四边形的性质.25、(1)∠EPF=120°;(2)AE+AF=6.【解题分析】试题分析:(1)过点P作PG⊥EF于G,解直角三角形即可得到结论;
(2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,证明△ABC≌△ADC,Rt△PME≌Rt△PNF,问题即可得证.试题解析:(1)如图1,过点P作PG⊥EF于G,
∵PE=PF,
∴FG=EG=EF=2,∠FPG=∠EPG=∠EPF,
在△FPG中,sin∠FPG=,
∴∠FPG=60°,
∴∠EPF=2∠FPG=120°;
(2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,
∵四边形ABCD是菱形,
∴AD=AB,DC=BC,
∴∠DAC=∠BAC,
∴PM=PN,
在Rt△PME于Rt△PNF中,,
∴Rt△PME≌Rt△PNF,
∴FN=EM,在Rt△PMA中,∠PMA=90°,∠PAM
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省南平市塔前中学2020年高三物理模拟试题含解析
- 11《一块奶酪》说课稿-2024-2025学年统编版语文三年级上册
- 2024机关单位食堂承包合同
- 商务会议礼仪解析
- 解读现代艺术
- 旅游业财务全解析
- 2024正规婚姻解除财产分割协议书范本12篇
- 2024版个人向企业租车合同
- 专项给排水施工分包协议(2024修订版)版B版
- 3《百合花》《哦香雪》比较阅读说课稿 2024-2025学年统编版高中语文必修上册
- 日本疾病诊断分组(DPC)定额支付方式课件
- 复旦大学用经济学智慧解读中国课件03用大历史观看中国社会转型
- (精心整理)高一语文期末模拟试题
- QC成果解决铝合金模板混凝土气泡、烂根难题
- 管线管廊布置设计规范
- 提升教练技术--回应ppt课件
- 最新焊接工艺评定表格
- 精品洲际酒店集团皇冠酒店设计标准手册
- 农副产品交易中心运营方案
- 四川省南充市2019-2020学年九年级上期末数学试卷(含答案解析)
- 智多星建设工程造价软件操作及应用PPT课件
评论
0/150
提交评论