2023-2024学年北京市北京第四中学高一上数学期末联考试题含解析_第1页
2023-2024学年北京市北京第四中学高一上数学期末联考试题含解析_第2页
2023-2024学年北京市北京第四中学高一上数学期末联考试题含解析_第3页
2023-2024学年北京市北京第四中学高一上数学期末联考试题含解析_第4页
2023-2024学年北京市北京第四中学高一上数学期末联考试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年北京市北京第四中学高一上数学期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与直线垂直,则()A.1 B.2C. D.2.“是”的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分又不必要3.对任意正实数,不等式恒成立,则实数的取值范围是()A. B.C. D.4.若将函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数的图象,则下列说法正确的是()A.的最小正周期为 B.在区间上单调递减C.图象的一条对称轴为直线 D.图象的一个对称中心为5.已知,则三者的大小关系是A. B.C. D.6.将函数的图象向左平移个单位后得到函数的图象,则下列说法正确的是()A.图象的一条对称轴为 B.在上单调递增C.在上的最大值为1 D.的一个零点为7.函数f(x)=|x|+(aR)的图象不可能是()A. B.C. D.8.若,,,则大小关系为A. B.C. D.9.命题“,”的否定为()A., B.,C, D.,10.在正项等比数列中,若依次成等差数列,则的公比为A.2 B.C.3 D.二、填空题:本大题共6小题,每小题5分,共30分。11.边长为2的菱形中,,将沿折起,使得平面平面,则二面角的余弦值为__________12.已知,则___________13.已知曲线且过定点,若且,则的最小值为_____14.求值:2+=____________15.已知,若,则__________.16.若,则_____________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在平面直角坐标系中,角的始边与轴的非负半轴重合,终边在第二象限且与单位圆相交于点,过点作轴的垂线,垂足为点,.(1)求的值;(2)求的值.18.已知,为锐角,,.(1)求的值;(2)求的值.19.已知函数..(1)判断函数的奇偶性并证明;(2)若函数在区间上单调递减,且值域为,求实数的取值范围20.设函数,其中(1)若当时取到最小值,求a的取值范围(2)设的最大值为,最小值为,求的函数解析式,并求的最小值21.已知二次函数,且是函数的零点.(1)求解析式,并解不等式;(2)若,求函数的值域

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】分析直线方程可知,这两条直线垂直,斜率之积为-1.【详解】由题意可知,即故选:B.2、A【解析】根据充分必要条件的定义判断【详解】若x=1,则x2-4x+3=0,是充分条件,若x2-4x+3=0,则x=1或x=3,不是必要条件.故选:A.3、C【解析】先根据不等式恒成立等价于,再根据基本不等式求出,即可求解.【详解】解:,即,即又当且仅当“”,即“”时等号成立,即,故.故选:C.4、D【解析】根据题意函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),再将所得图象向左平移个单位长度,得到函数,即可求出最小正周期,把看成是整体,分别求的单调递减区间、对称轴、对称中心,在分别验证选项即可得到答案.【详解】由于函数的图象上所有点的横坐标缩短为原来的一半(纵坐标不变),故函数的解析式为,再将所得图象向左平移个单位长度,.,故A错误;的单调减区间为,故在区间内不单调递减;图象的对称轴为,不存在使得图象的一条对称轴为直线,故C错误;图象的对称中心的横坐标为,当时,图象的一个对称中心为,故D正确.故选:D.5、A【解析】因为<,所以,选A.6、B【解析】对选项A,,即可判断A错误;对选项B,求出的单调区间即可判断B正确;对选项C,求出在的最大值即可判断C错误;对选项D,根据,即可判断D错误.详解】,.对选项A,因为,故A错误;对选项B,因为,.解得,.当时,函数的增区间为,所以在上单调递增,故B正确;对选项C,因为,所以,所以,,,故错误;对选项D,,故D错误.故选:B7、C【解析】对分类讨论,将函数写成分段形式,利用对勾函数的单调性,逐一进行判断图象即可.【详解】,①当时,,图象如A选项;②当时,时,,在递减,在递增;时,,由,单调递减,所以在上单调递减,故图象为B;③当时,时,,可得,,在递增,即在递增,图象为D;故选:C.8、D【解析】取中间值0和1分别与这三个数比较大小,进而得出结论【详解】解:,,,,故选:D.【点睛】本题主要考查取中间值法比较数的大小,属于基础题9、B【解析】根据特称命题的否定为全称命题可得.【详解】根据特称命题的否定为全称命题,可得命题“,”的否定为“,”故选:B.10、A【解析】由等差中项的性质可得,又为等比数列,所以,化简整理可求出q的值【详解】由题意知,又为正项等比数列,所以,且,所以,所以或(舍),故选A【点睛】本题考查等差数列与等比数列的综合应用,熟练掌握等差中项的性质,及等比数列的通项公式是解题的关键,属基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】作,则为中点由题意得面作,连则为二面角的平面角故,,点睛:本题考查了由平面图形经过折叠得到立体图形,并计算二面角的余弦值,本题关键在于先找出二面角的平面角,依据定义先找出平面角,然后根据各长度,计算得结果12、【解析】根据同角三角函数的关系求得,再运用正弦、余弦的二倍角公式求得,由正弦和角公式可求得答案.【详解】解:因为,所以,所以,所以.故答案为:.13、【解析】由指数函数图象所过定点求出,利用“1”的代换凑配出定值后用基本不等式得出最小值.【详解】令,,则,∴定点为,,,当且仅当时等号成立,即时取得最小值.故答案为:.【点睛】本题考查指数函数的图象与性质,考查用基本不等式求最值.“1”的代换是解题关键.14、-3【解析】利用对数、指数的性质和运算法则求解【详解】解:()lg(1)lg1[()3]2+()02+1=﹣3故答案为﹣3【点睛】本题考查对数式、指数式的化简求值,是基础题,解题时要认真审题,注意对数、指数的性质、运算法则的合理运用15、【解析】由已知先求得,再求得,代入可得所需求的函数值.【详解】由已知得,即,所以,而,故答案为.【点睛】本题考查函数求值中的给值求值问题,关键在于由已知的函数值求得其数量关系,代入所需求的函数解析式中,可得其值,属于基础题.16、【解析】平方得三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由三角函数的定义可得出的值,再结合同角三角函数的基本关系可求得的值;(2)利用诱导公式结合弦化切可求得结果.【小问1详解】解:由题意可知点的横坐标为,则,因为为第二象限角,则,故.【小问2详解】解:.18、(1)(2)【解析】(1)根据同角三角函数关系求得,再用诱导公式化简即可求解;(2)利用余弦的两角差公式计算即可.【小问1详解】因为为锐角,所以,,.【小问2详解】因为,为锐角,所以,,所以,所以.19、(1)奇函数(2)【解析】(1)先求定义域,再研究与的关系得函数奇偶性;(2)由函数在上的单调性,得函数的值域,又因为值域为,转化为关于和的关系式,由二次函数的图像与性质求的取值范围【详解】(1)函数定义域为,且.所以函数为奇函数(2)考察为单调增函数,利用复合函数单调性得到,所以,,即,即为方程的两个根,且,令,满足条件,解得.【点睛】判断函数的奇偶性,要先求定义域,判断定义域是否关于原点对称再求与的关系;计算函数的值域,要先根据函数的定义域及单调性求解20、(1)(2),最小值为.【解析】(1)求得函数的导数,令,要使得函数在取到最小值,则函数必须先减后增,列出方程组,即可求解;(2)由(1)知,若时,得到函数在上单调递减,得到;若时,令,求得,分,,三种情况讨论,求得函数的解析式,利用一次函数、换元法和二次函数的性质,即可求解.【小问1详解】解:由函数,可得,令,要使得函数在取到最小值,则函数必须先减后增,则满足,解得,即实数取值范围为.【小问2详解】解:由(1)知,设,若时,即时,,即,函数在上单调递减,所以,可得;若时,即时,令,即,解得或,①当时,即时,在恒成立,即,可得函数在上单调递增,所以,可得;②当时,即时,在恒成立,即,可得函数在上单调递减,所以,可得;③当时,即时,当时,,即,单调递减;当时,,即,单调递增,所以当时,函数取得最小值,即,又由,可得,(i)当时,,即,所以,此时;(ii)当时,,即,所以,此时,综上可得,函数的解析式为,当时,;当时,;当时,令,则,可得,根据二次函数的性质,可得当时,函数取得最小值,最小值为;当时,令,则,可得,则,综上可得,函数的最小值为.21、(1);;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论