版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省宜春市第九中学中考联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,152.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.963.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是()A.3 B.3.5 C.4 D.54.用配方法解方程时,可将方程变形为()A. B. C. D.5.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线ACCB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A. B.C. D.6.若关于的一元二次方程的一个根是0,则的值是()A.1 B.-1 C.1或-1 D.7.如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位;天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润,下列结论错误的是()A.第24天的销售量为200件 B.第10天销售一件产品的利润是15元C.第12天与第30天这两天的日销售利润相等 D.第27天的日销售利润是875元8.根据下表中的二次函数的自变量与函数的对应值,可判断该二次函数的图象与轴().
…
…
…
…A.只有一个交点 B.有两个交点,且它们分别在轴两侧C.有两个交点,且它们均在轴同侧 D.无交点9.如图,在△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=24°,则∠BDC的度数为()A.42° B.66° C.69° D.77°10.已知反比例函数下列结论正确的是()A.图像经过点(-1,1) B.图像在第一、三象限C.y随着x的增大而减小 D.当x>1时,y<111.如图,a∥b,点B在直线b上,且AB⊥BC,∠1=40°,那么∠2的度数()A.40° B.50° C.60° D.90°12.如图,反比例函数(x>0)的图象经过矩形OABC对角线的交点M,分别于AB、BC交于点D、E,若四边形ODBE的面积为9,则k的值为()A.1 B.2 C.3 D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.函数y=+的自变量x的取值范围是_____.14.如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为_______.15.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.16.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____.17.一个凸边形的内角和为720°,则这个多边形的边数是__________________18.使有意义的x的取值范围是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知抛物线与x轴负半轴相交于点A,与y轴正半轴相交于点B,,直线l过A、B两点,点D为线段AB上一动点,过点D作轴于点C,交抛物线于点
E.(1)求抛物线的解析式;(2)若抛物线与x轴正半轴交于点F,设点D的横坐标为x,四边形FAEB的面积为S,请写出S与x的函数关系式,并判断S是否存在最大值,如果存在,求出这个最大值;并写出此时点E的坐标;如果不存在,请说明理由.(3)连接BE,是否存在点D,使得和相似?若存在,求出点D的坐标;若不存在,说明理由.20.(6分)已知:如图,在正方形ABCD中,点E、F分别是AB、BC边的中点,AF与CE交点G,求证:AG=CG.21.(6分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:观点频数频率Aa0.2B120.24C8bD200.4(1)参加本次讨论的学生共有人;表中a=,b=;(2)在扇形统计图中,求D所在扇形的圆心角的度数;(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.22.(8分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.23.(8分)计算:()-1+()0+-2cos30°.24.(10分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:(1)本次调查的学生有多少人?(2)补全上面的条形统计图;(3)扇形统计图中C对应的中心角度数是;(4)若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?25.(10分)如图,已知A(﹣4,),B(﹣1,m)是一次函数y=kx+b与反比例函数y=图象的两个交点,AC⊥x轴于点C,BD⊥y轴于点D.(1)求m的值及一次函数解析式;(2)P是线段AB上的一点,连接PC、PD,若△PCA和△PDB面积相等,求点P坐标.26.(12分)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.证明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的长,27.(12分)如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.试判断PD与⊙O的位置关系,并说明理由;若点C是弧AB的中点,已知AB=4,求CE•CP的值.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】
将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【题目详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【题目点拨】本题考查中位数和众数的概念,熟记概念即可快速解答.2、C【解题分析】
解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:,∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.3、A【解题分析】
根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.【题目详解】解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得AP≥AB,AP≥3.5,故选:A.【题目点拨】本题考查垂线段最短的性质,解题关键是利用垂线段的性质.4、D【解题分析】
配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【题目详解】解:故选D.【题目点拨】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.5、D【解题分析】
在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,分当0<x≤3(点Q在AC上运动,点P在AB上运动)和当3≤x≤6时(点P与点B重合,点Q在CB上运动)两种情况求出y与x的函数关系式,再结合图象即可解答.【题目详解】在△ABC中,∠C=90°,AC=BC=3cm,可得AB=,∠A=∠B=45°,当0<x≤3时,点Q在AC上运动,点P在AB上运动(如图1),由题意可得AP=x,AQ=x,过点Q作QN⊥AB于点N,在等腰直角三角形AQN中,求得QN=x,所以y==(0<x≤3),即当0<x≤3时,y随x的变化关系是二次函数关系,且当x=3时,y=4.5;当3≤x≤6时,点P与点B重合,点Q在CB上运动(如图2),由题意可得PQ=6-x,AP=3,过点Q作QN⊥BC于点N,在等腰直角三角形PQN中,求得QN=(6-x),所以y==(3≤x≤6),即当3≤x≤6时,y随x的变化关系是一次函数,且当x=6时,y=0.由此可得,只有选项D符合要求,故选D.【题目点拨】本题考查了动点函数图象,解决本题要正确分析动线运动过程,然后再正确计算其对应的函数解析式,由函数的解析式对应其图象,由此即可解答.6、B【解题分析】
根据一元二次方程的解的定义把x=0代入方程得到关于a的一元二次方程,然后解此方程即可【题目详解】把x=0代入方程得,解得a=±1.∵原方程是一元二次方程,所以
,所以,故故答案为B【题目点拨】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.7、C【解题分析】试题解析:A、根据图①可得第24天的销售量为200件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=-x+25,当x=10时,y=-10+25=15,故正确;C、当0≤t≤24时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(0,100),(24,200)代入得:,解得:,∴y=t+100,当t=12时,y=150,z=-12+25=13,∴第12天的日销售利润为;150×13=1950(元),第30天的日销售利润为;150×5=750(元),750≠1950,故C错误;D、第30天的日销售利润为;150×5=750(元),故正确.故选C8、B【解题分析】
根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【题目详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上则该二次函数的图像与轴有两个交点,且它们分别在轴两侧故选B.【题目点拨】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成.9、C【解题分析】在△ABC中,∠ACB=90°,∠A=24°,∴∠B=90°-∠A=66°.由折叠的性质可得:∠BCD=∠ACB=45°,∴∠BDC=180°-∠BCD-∠B=69°.故选C.10、B【解题分析】分析:直接利用反比例函数的性质进而分析得出答案.详解:A.反比例函数y=,图象经过点(﹣1,﹣1),故此选项错误;B.反比例函数y=,图象在第一、三象限,故此选项正确;C.反比例函数y=,每个象限内,y随着x的增大而减小,故此选项错误;D.反比例函数y=,当x>1时,0<y<1,故此选项错误.故选B.点睛:本题主要考查了反比例函数的性质,正确掌握反比例函数的性质是解题的关键.11、B【解题分析】分析:根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可.详解:∵AB⊥BC,∴∠ABC=90°,∵点B在直线b上,∴∠1+∠ABC+∠3=180°,∴∠3=180°-∠1-90°=50°,∵a∥b,∴∠2=∠3=50°.故选B.点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键.12、C【解题分析】
本题可从反比例函数图象上的点E、M、D入手,分别找出△OCE、△OAD、矩形OABC的面积与|k|的关系,列出等式求出k值.【题目详解】由题意得:E、M、D位于反比例函数图象上,则,过点M作MG⊥y轴于点G,作MN⊥x轴于点N,则S□ONMG=|k|.又∵M为矩形ABCO对角线的交点,∴S矩形ABCO=4S□ONMG=4|k|,∵函数图象在第一象限,k>0,∴.解得:k=1.故选C.【题目点拨】本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|,本知识点是中考的重要考点,同学们应高度关注.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、x≥1且x≠3【解题分析】
根据二次根式的有意义和分式有意义的条件,列出不等式求解即可.【题目详解】根据二次根式和分式有意义的条件可得:解得:且故答案为:且【题目点拨】考查自变量的取值范围,掌握二次根式和分式有意义的条件是解题的关键.14、【解题分析】
解:如图,作OH⊥DK于H,连接OK,∵以AD为直径的半圆,正好与对边BC相切,∴AD=2CD.∴根据折叠对称的性质,A'D=2CD.∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.∴∠DOK=120°.∴扇形ODK的面积为.∵∠ODH=∠OKH=30°,OD=3cm,∴.∴.∴△ODK的面积为.∴半圆还露在外面的部分(阴影部分)的面积是:.故答案为:.15、3【解题分析】
先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.【题目详解】∵四边形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案为:3.【题目点拨】本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16、【解题分析】
将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.【题目详解】解:将三个小区分别记为A、B、C,列表如下:ABCA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=.故答案为:.【题目点拨】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.17、1【解题分析】
设这个多边形的边数是n,根据多边形的内角和公式:,列方程计算即可.【题目详解】解:设这个多边形的边数是n根据多边形内角和公式可得解得.故答案为:1.【题目点拨】此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.18、【解题分析】二次根式有意义的条件.【分析】根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.【解题分析】
利用二次函数图象上点的坐标特征可得出点A、B的坐标,结合即可得出关于a的一元一次方程,解之即可得出结论;由点A、B的坐标可得出直线AB的解析式待定系数法,由点D的横坐标可得出点D、E的坐标,进而可得出DE的长度,利用三角形的面积公式结合即可得出S关于x的函数关系式,再利用二次函数的性质即可解决最值问题;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,设点D的坐标为,则点E的坐标为,进而可得出DE、BD的长度当时,利用等腰直角三角形的性质可得出,进而可得出关于m的一元二次方程,解之取其非零值即可得出结论;当时,由点B的纵坐标可得出点E的纵坐标为4,结合点E的坐标即可得出关于m的一元二次方程,解之取其非零值即可得出结论综上即可得出结论.【题目详解】当时,有,解得:,,点A的坐标为.当时,,点B的坐标为.,,解得:,抛物线的解析式为.点A的坐标为,点B的坐标为,直线AB的解析式为.点D的横坐标为x,则点D的坐标为,点E的坐标为,如图.点F的坐标为,点A的坐标为,点B的坐标为,,,,.,当时,S取最大值,最大值为18,此时点E的坐标为,与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.,,若要和相似,只需或如图.设点D的坐标为,则点E的坐标为,,当时,,,,为等腰直角三角形.,即,解得:舍去,,点D的坐标为;当时,点E的纵坐标为4,,解得:,舍去,点D的坐标为.综上所述:存在点D,使得和相似,此时点D的坐标为或.故答案为:(1);(2)与x的函数关系式为,S存在最大值,最大值为18,此时点E的坐标为.(3)存在点D,使得和相似,此时点D的坐标为或.【题目点拨】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:利用二次函数图象上点的坐标特征求出点A、B的坐标;利用三角形的面积找出S关于x的函数关系式;分及两种情况求出点D的坐标.20、详见解析.【解题分析】
先证明△ADF≌△CDE,由此可得∠DAF=∠DCE,∠AFD=∠CED,再根据∠EAG=∠FCG,AE=CF,∠AEG=∠CFG可得△AEG≌△CFG,所以AG=CG.【题目详解】证明:∵四边形ABCD是正方形,∴AD=DC,∵E、F分别是AB、BC边的中点,∴AE=ED=CF=DF.又∠D=∠D,∴△ADF≌△CDE(SAS).∴∠DAF=∠DCE,∠AFD=∠CED.∴∠AEG=∠CFG.在△AEG和△CFG中,∴△AEG≌△CFG(ASA).∴AG=CG.【题目点拨】本题主要考查正方形的性质、全等三角形的判定和性质,关键是要灵活运用全等三角形的判定方法.21、(1)50、10、0.16;(2)144°;(3).【解题分析】
(1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,(2)用360°乘以D观点的频率即可得;(3)画出树状图,然后根据概率公式列式计算即可得解【题目详解】解:(1)参加本次讨论的学生共有12÷0.24=50,则a=50×0.2=10,b=8÷50=0.16,故答案为50、10、0.16;(2)D所在扇形的圆心角的度数为360°×0.4=144°;(3)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率为.【题目点拨】此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.22、(1)y=x2+2x﹣3;(2)点P的坐标为(2,21)或(﹣2,5);(3).【解题分析】
(1)先根据点A坐标及对称轴得出点B坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.然后依据S△POC=2S△BOC列出关于a的方程,从而可求得a的值,于是可求得点P的坐标;(3)先求得直线AC的解析式,设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3),然后可得到QD与x的函数的关系,最后利用配方法求得QD的最大值即可.【题目详解】解:(1)∵抛物线与x轴的交点A(﹣3,0),对称轴为直线x=﹣1,∴抛物线与x轴的交点B的坐标为(1,0),设抛物线解析式为y=a(x+3)(x﹣1),将点C(0,﹣3)代入,得:﹣3a=﹣3,解得a=1,则抛物线解析式为y=(x+3)(x﹣1)=x2+2x﹣3;(2)设点P的坐标为(a,a2+2a﹣3),则点P到OC的距离为|a|.∵S△POC=2S△BOC,∴•OC•|a|=2×OC•OB,即×3×|a|=2××3×1,解得a=±2.当a=2时,点P的坐标为(2,21);当a=﹣2时,点P的坐标为(﹣2,5).∴点P的坐标为(2,21)或(﹣2,5).(3)如图所示:设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,∴直线AC的解析式为y=﹣x﹣3.设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+﹣)=﹣(x+)2+,∴当x=﹣时,QD有最大值,QD的最大值为.【题目点拨】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.23、4+2.【解题分析】
原式第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【题目详解】原式=3+1+3-2×=4+2.24、(1)150人;(2)补图见解析;(3)144°;(4)300盒.【解题分析】
(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【题目详解】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【题目点拨】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.25、(1)m=2;y=x+;(2)P点坐标是(﹣,).【解题分析】
(1)利用待定系数法求一次函数和反比例函数的解析式;
(2)设点P的坐标为根据面积公式和已知条件列式可求得的值,并根据条件取舍,得出点P的坐标.【题目详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 银屑病的辩证施护
- 骨灰安放合同
- 部编版七年级下册道德与法治第二课青春的心弦同步练习
- 煤矿作业场所职业危害防治制度
- 专题03 扩句与缩句(讲义+试题) -2023年三升四语文暑假衔接课(统编版)
- 非财务人员培训
- 方舟生存进化全物品id代码讲解-方舟物品id-方舟物品代码
- 机械公司车位租赁合同范本
- 油气管道建设大车租赁合同
- 教师教学评估合同样本
- 小记者第一课我是一名小记者
- 团结友爱和睦相处主题班会
- 2024年采购部年度工作总结
- 2024年总经理聘任书
- 2024年江苏省中等职业学校学生学业水平考试机械CAD绘图评分表
- 期中 (试题) -2024-2025学年外研版(三起)英语六年级上册
- 中小学教师职业道德规范(2023年修订)全文1500字
- 2024年车路云一体化系统建设与应用指南报告
- 2024中国移动重庆公司社会招聘138人高频难、易错点500题模拟试题附带答案详解
- 二十届三中全会精神知识竞赛试题及答案
- (完整版)初中道德与法治课程标准
评论
0/150
提交评论