版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省德州市六校2024届中考数学押题卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(共10小题,每小题3分,共30分)1.将抛物线向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A. B. C. D.2.估计的值在()A.0到l之间 B.1到2之间 C.2到3之间 D.3到4之间3.如图所示是由相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置上小正方体的个数,那么该几何体的主视图是()A. B. C. D.4.下列图形是由同样大小的棋子按照一定规律排列而成的,其中,图①中有5个棋子,图②中有10个棋子,图③中有16个棋子,…,则图⑥________中有个棋子()A.31 B.35 C.40 D.505.如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,有如下五个结论①AE⊥AF;②EF:AF=:1;③AF2=FH•FE;④∠AFE=∠DAE+∠CFE⑤FB:FC=HB:EC.则正确的结论有()A.2个 B.3个 C.4个 D.5个6.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为A. B. C. D.7.关于▱ABCD的叙述,不正确的是()A.若AB⊥BC,则▱ABCD是矩形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是菱形8.如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=()A. B.1 C. D.9.下列图形中,哪一个是圆锥的侧面展开图?A. B. C. D.10.如图,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠1二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,矩形ABCD中,AB=2,点E在AD边上,以E为圆心,EA长为半径的⊙E与BC相切,交CD于点F,连接EF.若扇形EAF的面积为43π,则12.如图,在△ABC中,AB=2,BC=3.5,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为_____.13.若正多边形的一个内角等于120°,则这个正多边形的边数是_____.14.如图,的半径为1,正六边形内接于,则图中阴影部分图形的面积和为________(结果保留).15.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.16.一个圆锥的母线长为5cm,底面半径为1cm,那么这个圆锥的侧面积为_____cm1.三、解答题(共8题,共72分)17.(8分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.18.(8分)某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式.19.(8分)计算:.20.(8分)先化简,再求值:,其中.21.(8分)如图,已知Rt△ABC中,∠C=90°,D为BC的中点,以AC为直径的⊙O交AB于点E.(1)求证:DE是⊙O的切线;(2)若AE:EB=1:2,BC=6,求⊙O的半径.22.(10分)下面是“作三角形一边上的高”的尺规作图过程.已知:△ABC.求作:△ABC的边BC上的高AD.作法:如图2,(1)分别以点B和点C为圆心,BA,CA为半径作弧,两弧相交于点E;(2)作直线AE交BC边于点D.所以线段AD就是所求作的高.请回答:该尺规作图的依据是______.23.(12分)如果a2+2a-1=0,求代数式的值.24.据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有___名,扇形统计图中“基本了解”部分所对应扇形的圆心角为___;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.
参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】
直接根据“上加下减,左加右减”的原则进行解答即可.【题目详解】将抛物线向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为,故答案选A.2、B【解题分析】∵9<11<16,∴,∴故选B.3、C【解题分析】A、B、D不是该几何体的视图,C是主视图,故选C.【题目点拨】主视图是由前面看到的图形,俯视图是由上面看到的图形,左视图是由左面看到的图形,能看到的线画实线,看不到的线画虚线.4、C【解题分析】
根据题意得出第n个图形中棋子数为1+2+3+…+n+1+2n,据此可得.【题目详解】解:∵图1中棋子有5=1+2+1×2个,图2中棋子有10=1+2+3+2×2个,图3中棋子有16=1+2+3+4+3×2个,…∴图6中棋子有1+2+3+4+5+6+7+6×2=40个,故选C.【题目点拨】本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.5、C【解题分析】
由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.【题目详解】解:由题意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此选项①正确;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正确;∵△AEF是等腰直角三角形,有EF:AF=:1,故此选项②正确;∵△AEF与△AHF不相似,∴AF2=FH·FE不正确.故此选项③错误,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此选项⑤正确.故选:C【题目点拨】本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.6、B【解题分析】试题解析:在菱形中,,,所以,,在中,,因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.7、B【解题分析】
由矩形和菱形的判定方法得出A、C、D正确,B不正确;即可得出结论.【题目详解】解:A、若AB⊥BC,则是矩形,正确;B、若,则是正方形,不正确;C、若,则是矩形,正确;D、若,则是菱形,正确;故选B.【题目点拨】本题考查了正方形的判定、矩形的判定、菱形的判定;熟练掌握正方形的判定、矩形的判定、菱形的判定是解题的关键.8、D【解题分析】
由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出△ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到∠BAC=30°,求得AC⊥BE,推出C在对角线AH上,得到A,C,H共线,于是得到结论.【题目详解】如图,连接AC交BE于点O,∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,∴AB=BE,∵四边形AEHB为菱形,∴AE=AB,∴AB=AE=BE,∴△ABE是等边三角形,∵AB=3,AD=,∴tan∠CAB=,∴∠BAC=30°,∴AC⊥BE,∴C在对角线AH上,∴A,C,H共线,∴AO=OH=AB=,∵OC=BC=,∵∠COB=∠OBG=∠G=90°,∴四边形OBGM是矩形,∴OM=BG=BC=,∴HM=OH﹣OM=,故选D.【题目点拨】本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.9、B【解题分析】
根据圆锥的侧面展开图的特点作答.【题目详解】A选项:是长方体展开图.B选项:是圆锥展开图.C选项:是棱锥展开图.D选项:是正方体展开图.故选B.【题目点拨】考查了几何体的展开图,注意圆锥的侧面展开图是扇形.10、D【解题分析】
先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.【题目详解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故选:D.【题目点拨】本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.二、填空题(本大题共6个小题,每小题3分,共18分)11、1【解题分析】分析:设∠AEF=n°,由题意nπ×2详解:设∠AEF=n°,由题意nπ×2∴∠AEF=120°,∴∠FED=60°,∵四边形ABCD是矩形,∴BC=AD,∠D=90°,∴∠EFD=10°,∴DE=12∴BC=AD=2+1=1,故答案为1.点睛:本题考查切线的性质、矩形的性质、扇形的面积公式、直角三角形10度角性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.12、1.1.【解题分析】分析:由将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上,可得AD=AB,又由∠B=60°,可证得△ABD是等边三角形,继而可得BD=AB=2,则可求得答案.详解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案为:1.1.点睛:此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.13、6【解题分析】试题分析:设所求正n边形边数为n,则120°n=(n﹣2)•180°,解得n=6;考点:多边形内角与外角.14、.【解题分析】
连接OA,OB,OC,则根据正六边形内接于可知阴影部分的面积等于扇形OAB的面积,计算出扇形OAB的面积即可.【题目详解】解:如图所示,连接OA,OB,OC,∵正六边形内接于∴∠AOB=60°,四边形OABC是菱形,∴AG=GC,OG=BG,∠AGO=∠BGC∴△AGO≌△BGC.∴△AGO的面积=△BGC的面积∵弓形DE的面积=弓形AB的面积∴阴影部分的面积=弓形DE的面积+△ABC的面积=弓形AB的面积+△AGB的面积+△BGC的面积=弓形AB的面积+△AGB的面积+△AGO的面积=扇形OAB的面积==故答案为.【题目点拨】本题考查了扇形的面积计算公式,利用数形结合进行转化是解题的关键.15、1【解题分析】
解:∵正六边形ABCDEF的边长为3,∴AB=BC=CD=DE=EF=FA=3,∴弧BAF的长=3×6﹣3﹣3═12,∴扇形AFB(阴影部分)的面积=×12×3=1.故答案为1.【题目点拨】本题考查正多边形和圆;扇形面积的计算.16、【解题分析】分析:根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.详解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=1π•5=10π,∴圆锥的侧面积=•10π•1=10π(cm1).故答案为10π.点睛:本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=•l•R,(l为弧长).三、解答题(共8题,共72分)17、(1)120,54;(2)补图见解析;(3)660名;(4).【解题分析】
(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360°乘以样本中电话人数所占比例;(2)先计算出喜欢使用短信的人数,然后补全条形统计图;(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求解.【题目详解】解:(1)这次统计共抽查学生24÷20%=120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是360°×=54°,故答案为120、54;(2)喜欢使用短信的人数为120﹣18﹣24﹣66﹣2=10(人),条形统计图为:(3)1200×=660,所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;(4)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3,所以甲乙两名同学恰好选中同一种沟通方式的概率.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图和用样本估计总体.18、(1)一件A型、B型丝绸的进价分别为500元,400元;(2)①,②.【解题分析】
(1)根据题意应用分式方程即可;(2)①根据条件中可以列出关于m的不等式组,求m的取值范围;②本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系.【题目详解】(1)设型丝绸的进价为元,则型丝绸的进价为元,根据题意得:,解得,经检验,为原方程的解,,答:一件型、型丝绸的进价分别为500元,400元.(2)①根据题意得:,的取值范围为:,②设销售这批丝绸的利润为,根据题意得:,,(Ⅰ)当时,,时,销售这批丝绸的最大利润;(Ⅱ)当时,,销售这批丝绸的最大利润;(Ⅲ)当时,当时,销售这批丝绸的最大利润.综上所述:.【题目点拨】本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.19、【解题分析】
直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质以及特殊角的三角函数值化简进而得出答案.【题目详解】原式=9﹣2+1﹣2=.【题目点拨】本题考查了实数运算,正确化简各数是解题的关键.20、-1,-9.【解题分析】
先去括号,再合并同类项;最后把x=-2代入即可.【题目详解】原式=,当x=-2时,原式=-8-1=-9.【题目点拨】本题考查了整式的混合运算及化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.21、(1)证明见解析;(1)32【解题分析】试题分析:(1)求出∠OED=∠BCA=90°,根据切线的判定即可得出结论;(1)求出△BEC∽△BCA,得出比例式,代入求出即可.试题解析:(1)证明:连接OE、EC.∵AC是⊙O的直径,∴∠AEC=∠BEC=90°.∵D为BC的中点,∴ED=DC=BD,∴∠1=∠1.∵OE=OC,∴∠3=∠4,∴∠1+∠3=∠1+∠4,即∠OED=∠ACB.∵∠ACB=90°,∴∠OED=90°,∴DE是⊙O的切线;(1)由(1)知:∠BEC=90°.在Rt△BEC与Rt△BCA中,∵∠B=∠B,∠BEC=∠BCA,∴△BEC∽△BCA,∴BE:BC=BC:BA,∴BC1=BE•BA.∵AE:EB=1:1,设AE=x,则BE=1x,BA=3x.∵BC=6,∴61=1x•3x,解得:x=6,即AE=6,∴AB=36,∴AC=AB2-BC2=点睛:本题考查了切线的判定和相似三角形的性质和判定,能求出∠OED=∠BCA和△BEC∽△BCA是解答此题的关键.22、到一条线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度高风险投资财产分割离婚协议书3篇
- 二零二五年股权质押贷款资产评估及处置合同3篇
- 二零二五年度高端家具定制加工厂合作协议2篇
- 2024版场摊位租赁合同范文
- 二零二五年环境监测兼职工程师合同保密与监测数据协议3篇
- 2025年度物业与业主之间物业服务合同续约协议范本18篇
- 2025年度跨境电商平台运营及品牌推广合同3篇
- 2024版广告代理业务合同
- 二零二五年度物流运输反担保合同与运输工具抵押协议2篇
- 二零二五年度厕所革命工程厕所防臭除味技术合作合同2篇
- 2025年河北供水有限责任公司招聘笔试参考题库含答案解析
- Unit3 Sports and fitness Discovering Useful Structures 说课稿-2024-2025学年高中英语人教版(2019)必修第一册
- (完整版)形式发票模版(国际件通用)
- 武汉东湖宾馆建设项目委托代建合同
- 安徽大学大学生素质教育学分认定办法
- 巴布亚新几内亚离网光储微网供电方案
- 高度限位装置类型及原理
- 中文版gcs electrospeed ii manual apri rev8v00印刷稿修改版
- 新生儿预防接种护理质量考核标准
- 除氧器出水溶解氧不合格的原因有哪些
- 冲击式机组水轮机安装概述与流程
评论
0/150
提交评论