版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市门头沟区名校2024届中考二模数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1.下列命题是真命题的个数有()①菱形的对角线互相垂直;②平分弦的直径垂直于弦;③若点(5,﹣5)是反比例函数y=图象上的一点,则k=﹣25;④方程2x﹣1=3x﹣2的解,可看作直线y=2x﹣1与直线y=3x﹣2交点的横坐标.A.1个 B.2个 C.3个 D.4个2.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90° B.135° C.270° D.315°3.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是
A. B. C. D.4.计算(—2)2-3的值是()A、1B、2C、—1D、—25.在平面直角坐标系中,已知点A(﹣4,2),B(﹣6,﹣4),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣2,1) B.(﹣8,4)C.(﹣8,4)或(8,﹣4) D.(﹣2,1)或(2,﹣1)6.下列说法中正确的是()A.检测一批灯泡的使用寿命适宜用普查.B.抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就一定有5次正面朝上.C.“367人中有两人是同月同日生”为必然事件.D.“多边形内角和与外角和相等”是不可能事件.7.下列计算正确的是()A.﹣2x﹣2y3•2x3y=﹣4x﹣6y3 B.(﹣2a2)3=﹣6a6C.(2a+1)(2a﹣1)=2a2﹣1 D.35x3y2÷5x2y=7xy8.已知:a、b是不等于0的实数,2a=3b,那么下列等式中正确的是()A.ab=23 B.a9.如图,是一次函数y=kx+b与反比例函数y=的图象,则关于x的不等式kx+b>的解集为A.x>1 B.﹣2<x<1C.﹣2<x<0或x>1 D.x<﹣210.一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(本大题共6个小题,每小题3分,共18分)11.如图,四边形ABCD与四边形EFGH位似,位似中心点是点O,,则=_____.12.如图,直线a∥b,直线c分别于a,b相交,∠1=50°,∠2=130°,则∠3的度数为()A.50° B.80° C.100° D.130°13.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.14.已知扇形的弧长为,圆心角为45°,则扇形半径为_____.15.如图,在平面直角坐标系中,矩形OACB的顶点O是坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.若E为边OA上的一个动点,当△CDE的周长最小时,则点E的坐标____________.16.如图AB是直径,C、D、E为圆周上的点,则______.三、解答题(共8题,共72分)17.(8分)已知.(1)化简A;(2)如果a,b是方程的两个根,求A的值.18.(8分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率;(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.19.(8分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣33(1)求抛物线F的解析式;(1)如图1,直线l:y=33x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1(3)在(1)中,若m=43①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.20.(8分)如图,四边形ABCD中,∠A=∠BCD=90°,BC=CD,CE⊥AD,垂足为E,求证:AE=CE.21.(8分)如图,在一次测量活动中,小华站在离旗杆底部(B处)6米的D处,仰望旗杆顶端A,测得仰角为60°,眼睛离地面的距离ED为1.5米.试帮助小华求出旗杆AB的高度.(结果精确到0.1米,).22.(10分)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+3a﹣2(a≠0)与x轴交于A,B两(点A在点B左侧).(1)当抛物线过原点时,求实数a的值;(2)①求抛物线的对称轴;②求抛物线的顶点的纵坐标(用含a的代数式表示);(3)当AB≤4时,求实数a的取值范围.23.(12分)先化简,再求值:()÷,其中a=+1.24.如图1,抛物线y=ax2+bx﹣2与x轴交于点A(﹣1,0),B(4,0)两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).(1)求该抛物线的解析式;(2)如图2,过点A作BE的平行线交抛物线于另一点D,点P是抛物线上位于线段AD下方的一个动点,连结PA,EA,ED,PD,求四边形EAPD面积的最大值;(3)如图3,连结AC,将△AOC绕点O逆时针方向旋转,记旋转中的三角形为△A′OC′,在旋转过程中,直线OC′与直线BE交于点Q,若△BOQ为等腰三角形,请直接写出点Q的坐标.
参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】
根据菱形的性质、垂径定理、反比例函数和一次函数进行判断即可.【题目详解】解:①菱形的对角线互相垂直是真命题;②平分弦(非直径)的直径垂直于弦,是假命题;③若点(5,-5)是反比例函数y=图象上的一点,则k=-25,是真命题;④方程2x-1=3x-2的解,可看作直线y=2x-1与直线y=3x-2交点的横坐标,是真命题;故选C.【题目点拨】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.一些命题的正确性是用推理证实的,这样的真命题叫做定理.2、C【解题分析】
根据四边形的内角和与直角三角形中两个锐角关系即可求解.【题目详解】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.【题目点拨】此题主要考查角度的求解,解题的关键是熟知四边形的内角和为360°.3、D【解题分析】
根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.【题目详解】①根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故①正确.②时,由图像可知此时,即,故②正确.③由对称轴,可得,所以错误,故③错误;④当时,由图像可知此时,即,将③中变形为,代入可得,故④正确.故答案选D.【题目点拨】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。4、A【解题分析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。解答本题的关键是掌握好有理数的加法、乘方法则。5、D【解题分析】
根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【题目详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【题目点拨】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.6、C【解题分析】【分析】根据相关的定义(调查方式,概率,可能事件,必然事件)进行分析即可.【题目详解】A.检测一批灯泡的使用寿命不适宜用普查,因为有破坏性;B.抛掷一枚均匀的硬币,正面朝上的概率是,如果抛掷10次,就可能有5次正面朝上,因为这是随机事件;C.“367人中有两人是同月同日生”为必然事件.因为一年只有365天或366天,所以367人中至少有两个日子相同;D.“多边形内角和与外角和相等”是可能事件.如四边形内角和和外角和相等.故正确选项为:C【题目点拨】本题考核知识点:对(调查方式,概率,可能事件,必然事件)理解.解题关键:理解相关概念,合理运用举反例法.7、D【解题分析】
A.根据同底数幂乘法法则判断;B.根据积的乘方法则判断即可;C.根据平方差公式计算并判断;D.根据同底数幂除法法则判断.【题目详解】A.-2x-2y32x3y=-4xy4,故本选项错误;B.
(−2a2)3=−8a6,故本项错误;C.
(2a+1)(2a−1)=4a2−1,故本项错误;D.35x3y2÷5x2y=7xy,故本选项正确.故答案选D.【题目点拨】本题考查了同底数幂的乘除法法则、积的乘方法则与平方差公式,解题的关键是熟练的掌握同底数幂的乘除法法则、积的乘方法则与平方差公式.8、B【解题分析】∵2a=3b,∴ab=3故选B.9、C【解题分析】
根据反比例函数与一次函数在同一坐标系内的图象可直接解答.【题目详解】观察图象,两函数图象的交点坐标为(1,2),(-2,-1),kx+b>的解就是一次函数y=kx+b图象在反比例函数y=的图象的上方的时候x的取值范围,
由图象可得:-2<x<0或x>1,
故选C.【题目点拨】本题考查的是反比例涵数与一次函数图象在同一坐标系中二者的图象之间的关系.一般这种类型的题不要计算反比计算表达式,解不等式,直接从从图象上直接解答.10、B【解题分析】
由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限【题目详解】解:∵,∴函数图象一定经过一、三象限;又∵,函数与y轴交于y轴负半轴,
∴函数经过一、三、四象限,不经过第二象限故选B【题目点拨】此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响二、填空题(本大题共6个小题,每小题3分,共18分)11、【解题分析】试题分析:∵四边形ABCD与四边形EFGH位似,位似中心点是点O,∴==,则===.故答案为.点睛:本题考查的是位似变换的性质,掌握位似图形与相似图形的关系、相似多边形的性质是解题的关键.12、B【解题分析】
根据平行线的性质即可解决问题【题目详解】∵a∥b,∴∠1+∠3=∠2,∵∠1=50°,∠2=130°,∴∠3=80°,故选B.【题目点拨】考查平行线的性质,解题的关键是熟练掌握平行线的性质,属于中考基础题.13、y1<y1【解题分析】
直接利用一次函数的性质分析得出答案.【题目详解】解:∵直线经过第一、三、四象限,∴y随x的增大而增大,∵x1<x1,∴y1与y1的大小关系为:y1<y1.故答案为:y1<y1.【题目点拨】此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.14、1【解题分析】
根据弧长公式l=代入求解即可.【题目详解】解:∵,∴.故答案为1.【题目点拨】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:l=.15、(1,0)【解题分析】分析:由于C、D是定点,则CD是定值,如果的周长最小,即有最小值.为此,作点D关于x轴的对称点D′,当点E在线段CD′上时的周长最小.详解:如图,作点D关于x轴的对称点D′,连接CD′与x轴交于点E,连接DE.若在边OA上任取点E′与点E不重合,连接CE′、DE′、D′E′由DE′+CE′=D′E′+CE′>CD′=D′E+CE=DE+CE,可知△CDE的周长最小,∵在矩形OACB中,OA=3,OB=4,D为OB的中点,∴BC=3,D′O=DO=2,D′B=6,∵OE∥BC,∴Rt△D′OE∽Rt△D′BC,有∴OE=1,∴点E的坐标为(1,0).故答案为:(1,0).点睛:考查轴对称-最短路线问题,坐标与图形性质,相似三角形的判定与性质等,找出点E的位置是解题的关键.16、90°【解题分析】
连接OE,根据圆周角定理即可求出答案.【题目详解】解:连接OE,
根据圆周角定理可知:
∠C=∠AOE,∠D=∠BOE,
则∠C+∠D=(∠AOE+∠BOE)=90°,
故答案为:90°.【题目点拨】本题主要考查了圆周角定理,解题要掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.三、解答题(共8题,共72分)17、(1);(2)-.【解题分析】
(1)先通分,再根据同分母的分式相加减求出即可;(2)根据根与系数的关系即可得出结论.【题目详解】(1)A=﹣==;(2)∵a,b是方程的两个根,∴a+b=4,ab=-12,∴.【题目点拨】本题考查了分式的加减和根与系数的关系,能正确根据分式的运算法则进行化简是解答此题的关键.18、(1)(2).【解题分析】
(1)根据总共三种,A只有一种可直接求概率;(2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.【题目详解】解:(1)甲投放的垃圾恰好是A类的概率是.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,(乙投放的垃圾恰有一袋与甲投放的垃圾是同类).即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.19、(1)y=x1+33x;(1)y1﹣y1=233π;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(13,23)、(﹣【解题分析】
(1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;(1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;(3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.【题目详解】(1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣33∴c=013-∴抛物线F的解析式为y=x1+33(1)将y=33x+m代入y=x1+33x,得:x解得:x1=﹣π,x1=π,∴y1=﹣133π+m,y1=∴y1﹣y1=(133π+m)﹣(﹣13(3)∵m=43∴点A的坐标为(﹣233,23∵点A′是点A关于原点O的对称点,∴点A′的坐标为(233,﹣①△AA′B为等边三角形,理由如下:∵A(﹣233,23),B(233∴AA′=83,AB=83,A′B=∴AA′=AB=A′B,∴△AA′B为等边三角形.②∵△AA′B为等边三角形,∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).(i)当A′B为对角线时,有x-2解得x=2∴点P的坐标为(13,23(ii)当AB为对角线时,有x=-2解得:x=-2∴点P的坐标为(﹣233,(iii)当AA′为对角线时,有x=-2解得:x=-2∴点P的坐标为(﹣23综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(13,23)、(﹣233【题目点拨】本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.20、证明见解析.【解题分析】
过点B作BF⊥CE于F,根据同角的余角相等求出∠BCF=∠D,再利用“角角边”证明△BCF和△CDE全等,根据全等三角形对应边相等可得BF=CE,再证明四边形AEFB是矩形,根据矩形的对边相等可得AE=BF,从而得证.【题目详解】证明:如图,过点B作BF⊥CE于F,∵CE⊥AD,∴∠D+∠DCE=90°,∵∠BCD=90°,∴∠BCF+∠DCE=90°∴∠BCF=∠D,在△BCF和△CDE中,∴△BCF≌△CDE(AAS),∴BF=CE,又∵∠A=90°,CE⊥AD,BF⊥CE,∴四边形AEFB是矩形,∴AE=BF,∴AE=CE.21、11.9米【解题分析】
先根据锐角三角函数的定义求出AC的长,再根据AB=AC+DE即可得出结论【题目详解】∵BD=CE=6m,∠AEC=60°,∴AC=CE•tan60°=6×=6≈6×1.732≈10.4m,∴AB=AC+DE=10.4+1.5=11.9m.答:旗杆AB的高度是11.9米.22、(1)a=;(2)①x=2;②抛物线的顶点的纵坐标为﹣a﹣2;(3)a的范围为a<﹣2或a≥.【解题分析】
(1)把原点坐标代入y=ax2﹣4ax+3a﹣2即可求得a的值;(2)①②把抛物线解析式配成顶点式,即可得到抛物线的对称轴和抛物线的顶点的纵坐标;(3)设A(m,1),B(n,1),利用抛物线与x轴的交点问题,则m、n为方程ax2﹣4ax+3a﹣2=1的两根,利用判别式的意义解得a>1或a<﹣2,再利用根与系数的关系得到m+n=4,mn=,然后根据完全平方公式利用n﹣m≤4得到(m+n)2﹣4mn≤16,所以42﹣4•≤16,接着解关于a的不等式,最后确定a的范围.【题目详解】(1)把(1,1)代入y=ax2﹣4ax+3a﹣2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年员工赔偿保障合同
- 2025年仓储货物出库协议
- 2025年增资协议签约审核
- 2025年城市基础设施勘察评估合同
- 2025年家具定制款式与功能协议
- 2025年家电定期检修与保养合同
- 2025年分期付款装饰材料购买协议
- 2025年亲情传承与抚养遗赠协议
- 2025年定值商标保护保险合同
- 二零二五版机床设备采购与生产自动化升级合同3篇
- 2025年度杭州市固废处理与资源化利用合同3篇
- 2024年安徽省公务员录用考试《行测》真题及答案解析
- 部编版二年级下册《道德与法治》教案及反思(更新)
- 充电桩项目运营方案
- 退休人员出国探亲申请书
- 高中物理竞赛真题分类汇编 4 光学 (学生版+解析版50题)
- 西方经济学-高鸿业-笔记
- 幼儿园美术教育研究策略国内外
- 2024届河南省五市高三第一次联考英语试题及答案
- 孕妇学校品管圈课件
- 《愿望的实现》交流ppt课件2
评论
0/150
提交评论