版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省大兴安岭松岭区古源中学中考数学对点突破模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,已知△ABC,△DCE,△FEG,△HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1.连接AI,交FG于点Q,则QI=()A.1 B. C. D.2.方程x2+2x﹣3=0的解是()A.x1=1,x2=3B.x1=1,x2=﹣3C.x1=﹣1,x2=3D.x1=﹣1,x2=﹣33.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A.1 B.2 C.3 D.44.根据北京市统计局发布的统计数据显示,北京市近五年国民生产总值数据如图1所示,2017年国民生产总值中第一产业、第二产业、第三产业所占比例如图2所示,根据以上信息,下列判断错误的是()A.2013年至2017年北京市国民生产总值逐年增加B.2017年第二产业生产总值为5320亿元C.2017年比2016年的国民生产总值增加了10%D.若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到33880亿元5.如图,已知线段AB,分别以A,B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至点M,则∠BCM的度数为()A.40° B.50° C.60° D.70°6.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为A. B. C.2 D.17.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A.75° B.90° C.105° D.115°8.如图,把△ABC剪成三部分,边AB,BC,AC放在同一直线上,点O都落在直线MN上,直线MN∥AB,则点O是△ABC的()A.外心 B.内心 C.三条中线的交点 D.三条高的交点9.如图,将边长为2cm的正方形OABC放在平面直角坐标系中,O是原点,点A的横坐标为1,则点C的坐标为()A.(,-1) B.(2,﹣1) C.(1,-) D.(﹣1,)10.不等式组的解集在数轴上表示正确的是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.若点A(1,m)在反比例函数y=的图象上,则m的值为________.12.被历代数学家尊为“算经之首”的九章算术是中国古代算法的扛鼎之作九章算术中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻一雀一燕交而处,衡适平并燕、雀重一斤问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻将一只雀、一只燕交换位置而放,重量相等只雀、6只燕重量为1斤问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为______.13.矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=1.将矩形纸片折叠,使点B与点P重合,折痕所在直线交矩形两边于点E,F,则EF长为________.14.一元二次方程x2=3x的解是:________.15.长城的总长大约为6700000m,将数6700000用科学记数法表示为______16.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.17.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C、D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E、F,则的值为_____.三、解答题(共7小题,满分69分)18.(10分)如图,某游乐园有一个滑梯高度AB,高度AC为3米,倾斜角度为58°.为了改善滑梯AB的安全性能,把倾斜角由58°减至30°,调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)19.(5分)如图所示,A、B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达,现在新建了桥EF(EF=DC),可直接沿直线AB从A地到达B地,已知BC=12km,∠A=45°,∠B=30°,桥DC和AB平行.(1)求桥DC与直线AB的距离;(2)现在从A地到达B地可比原来少走多少路程?(以上两问中的结果均精确到0.1km,参考数据:≈1.14,≈1.73)20.(8分)在□ABCD中,E为BC边上一点,且AB=AE,求证:AC=DE。21.(10分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.(1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;(2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.22.(10分)如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为2,求线段EF的长.23.(12分)如图,已知抛物线与轴交于两点(A点在B点的左边),与轴交于点.(1)如图1,若△ABC为直角三角形,求的值;(2)如图1,在(1)的条件下,点在抛物线上,点在抛物线的对称轴上,若以为边,以点、、、Q为顶点的四边形是平行四边形,求点的坐标;(3)如图2,过点作直线的平行线交抛物线于另一点,交轴于点,若﹕=1﹕1.求的值.24.(14分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】解:∵△ABC、△DCE、△FEG是三个全等的等腰三角形,∴HI=AB=2,GI=BC=1,BI=2BC=2,∴===,∴=.∵∠ABI=∠ABC,∴△ABI∽△CBA,∴=.∵AB=AC,∴AI=BI=2.∵∠ACB=∠FGE,∴AC∥FG,∴==,∴QI=AI=.故选D.点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解AB∥CD∥EF,AC∥DE∥FG是解题的关键.2、B【解题分析】
本题可对方程进行因式分解,也可把选项中的数代入验证是否满足方程.【题目详解】x2+2x-3=0,即(x+3)(x-1)=0,∴x1=1,x2=﹣3故选:B.【题目点拨】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.3、B【解题分析】
先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答【题目详解】将点A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有两个不等的实数根,∴x1+x2=4,x1•x2=3,∴AB=|x1﹣x2|==2;故选B.【题目点拨】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.4、C【解题分析】
由条形图与扇形图中的数据及增长率的定义逐一判断即可得.【题目详解】A、由条形图知2013年至2017年北京市国民生产总值逐年增加,此选项正确;B、2017年第二产业生产总值为28000×19%=5320亿元,此选项正确;C、2017年比2016年的国民生产总值增加了,此选项错误;D、若从2018年开始,每一年的国民生产总值比前一年均增长10%,到2019年的国民生产总值将达到2800×(1+10%)2=33880亿元,此选项正确;故选C.【题目点拨】本题主要考查条形统计图与扇形统计图,解题的关键是根据条形统计图与扇形统计图得出具体数据.5、B【解题分析】
解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.6、A【解题分析】
连接OM、OD、OF,由正六边形的性质和已知条件得出OM⊥OD,OM⊥EF,∠MFO=60°,由三角函数求出OM,再由勾股定理求出MD即可.【题目详解】连接OM、OD、OF,∵正六边形ABCDEF内接于⊙O,M为EF的中点,∴OM⊥OD,OM⊥EF,∠MFO=60°,∴∠MOD=∠OMF=90°,∴OM=OF•sin∠MFO=2×=,∴MD=,故选A.【题目点拨】本题考查了正多边形和圆、正六边形的性质、三角函数、勾股定理;熟练掌握正六边形的性质,由三角函数求出OM是解决问题的关键.7、C【解题分析】分析:依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.详解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选C.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.8、B【解题分析】
利用平行线间的距离相等,可知点到、、的距离相等,然后可作出判断.【题目详解】解:如图,过点作于,于,于.图1,(夹在平行线间的距离相等).如图:过点作于,作于E,作于.由题意可知:,,,∴,∴图中的点是三角形三个内角的平分线的交点,点是的内心,故选B.【题目点拨】本题考查平行线间的距离,角平分线定理,三角形的内心,解题的关键是判断出.9、A【解题分析】
作AD⊥y轴于D,作CE⊥y轴于E,则∠ADO=∠OEC=90°,得出∠1+∠1=90°,由正方形的性质得出OC=AO,∠1+∠3=90°,证出∠3=∠1,由AAS证明△OCE≌△AOD,得到OE=AD=1,CE=OD=,即可得出结果.【题目详解】解:作AD⊥y轴于D,作CE⊥y轴于E,如图所示:则∠ADO=∠OEC=90°,∴∠1+∠1=90°.∵AO=1,AD=1,∴OD=,∴点A的坐标为(1,),∴AD=1,OD=.∵四边形OABC是正方形,∴∠AOC=90°,OC=AO,∴∠1+∠3=90°,∴∠3=∠1.在△OCE和△AOD中,∵,∴△OCE≌△AOD(AAS),∴OE=AD=1,CE=OD=,∴点C的坐标为(,﹣1).故选A.【题目点拨】本题考查了正方形的性质、坐标与图形性质、全等三角形的判定与性质;熟练掌握正方形的性质,证明三角形全等得出对应边相等是解决问题的关键.10、A【解题分析】分析:分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来,选出符合条件的选项即可.详解:由①得,x≤1,由②得,x>-1,故此不等式组的解集为:-1<x≤1.在数轴上表示为:故选A.点睛:本题考查的是在数轴上表示一元一此不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二、填空题(共7小题,每小题3分,满分21分)11、3【解题分析】试题解析:把A(1,m)代入y=得:m=3.所以m的值为3.12、【解题分析】
设雀、燕每1只各重x斤、y斤,根据等量关系:今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤,列出方程组求解即可.【题目详解】设雀、燕每1只各重x斤、y斤,根据题意,得整理,得故答案为【题目点拨】考查二元一次方程组得应用,解题的关键是分析题意,找出题中的等量关系.13、6或2.【解题分析】试题分析:根据P点的不同位置,此题分两种情况计算:①点P在CD上;②点P在AD上.①点P在CD上时,如图:∵PD=1,CD=AB=9,∴CP=6,∵EF垂直平分PB,∴四边形PFBE是邻边相等的矩形即正方形,EF过点C,∵BF=BC=6,∴由勾股定理求得EF=;②点P在AD上时,如图:先建立相似三角形,过E作EQ⊥AB于Q,∵PD=1,AD=6,∴AP=1,AB=9,由勾股定理求得PB==1,∵EF垂直平分PB,∴∠1=∠2(同角的余角相等),又∵∠A=∠EQF=90°,∴△ABP∽△EFQ(两角对应相等,两三角形相似),∴对应线段成比例:,代入相应数值:,∴EF=2.综上所述:EF长为6或2.考点:翻折变换(折叠问题).14、x1=0,x2=1【解题分析】
先移项,然后利用因式分解法求解.【题目详解】x2=1xx2-1x=0,x(x-1)=0,x=0或x-1=0,∴x1=0,x2=1.故答案为:x1=0,x2=1【题目点拨】本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解15、6.7×106【解题分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】解:6700000用科学记数法表示应记为6.7×106,故选6.7×106.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为ax10n的形式,其中1≤|a|<10,n为整数;表示时关键要正确确定a的值以及n的值.16、【解题分析】
先判断掷一次骰子,向上的一面的点数为素数的情况,再利用概率公式求解即可.【题目详解】解:∵掷一次这枚骰子,向上的一面的点数为素数的有2,3,5共3种情况,∴掷一次这枚骰子,向上的一面的点数为素数的概率是:.故答案为:.【题目点拨】本题考查了求简单事件的概率,根据题意判断出素数的个数是解题的关键.17、【解题分析】
根据二次函数的图象和性质结合三角形面积公式求解.【题目详解】解:设点横坐标为,则点纵坐标为,点B的纵坐标为,∵BE∥x轴,∴点F纵坐标为,∵点F是抛物线上的点,∴点F横坐标为,∵轴,∴点D纵坐标为,∵点D是抛物线上的点,∴点D横坐标为,,故答案为.【题目点拨】此题重点考查学生对二次函数的图象和性质的应用能力,熟练掌握二次函数的图象和性质是解题的关键.三、解答题(共7小题,满分69分)18、调整后的滑梯AD比原滑梯AB增加2.5米【解题分析】试题分析:Rt△ABD中,根据30°的角所对的直角边是斜边的一半得到AD的长,然后在Rt△ABC中,求得AB的长后用即可求得增加的长度.试题解析:Rt△ABD中,∵AC=3米,∴AD=2AC=6(m)∵在Rt△ABC中,∴AD−AB=6−3.53≈2.5(m).∴调整后的滑梯AD比原滑梯AB增加2.5米.19、(1)桥DC与直线AB的距离是6.0km;(2)现在从A地到达B地可比原来少走的路程是4.1km.【解题分析】
(1)过C向AB作垂线构建三角形,求出垂线段的长度即可;(2)过点D向AB作垂线,然后根据解三角形求出AD,CB的长,进而求出现在从A地到达B地可比原来少走的路程.【题目详解】解:(1)作CH⊥AB于点H,如图所示,∵BC=12km,∠B=30°,∴km,BH=km,即桥DC与直线AB的距离是6.0km;(2)作DM⊥AB于点M,如图所示,∵桥DC和AB平行,CH=6km,∴DM=CH=6km,∵∠DMA=90°,∠B=45°,MH=EF=DC,∴AD=km,AM=DM=6km,∴现在从A地到达B地可比原来少走的路程是:(AD+DC+BC)﹣(AM+MH+BH)=AD+DC+BC﹣AM﹣MH﹣BH=AD+BC﹣AM﹣BH=km,即现在从A地到达B地可比原来少走的路程是4.1km.【题目点拨】做辅助线,构建直角三角形,根据边角关系解三角形,是解答本题的关键.20、见解析【解题分析】
在ABC和EAD中已经有一条边和一个角分别相等,根据平行的性质和等边对等角得出∠B=∠DAE证得ABC≌EAD,继而证得AC=DE.【题目详解】∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD(SAS),∴AC=DE.【题目点拨】本题主要考查了平行四边形的基本性质和全等三角形的判定及性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21、(1)见解析;(2)见解析.【解题分析】试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;(2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.试题解析:证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.22、(1)证明见解析;(2)①∠OCE=45°;②EF=-2.【解题分析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC.∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,∠EOC=∠DAO=105°,在中,∠E=30°,利用内角和定理,得:∠OCE=45°.②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=,∠OCE=45°.等腰直角三角形的斜边是腰长的倍,得CG=OG=2.FG=2.在Rt△OGE中,∠E=30°,得GE=,则EF=GE-FG=-2.【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=,∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=.∴EF=GE-FG=-2.【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.23、(1);(2)和;(3)【解题分析】
(1)设,,再根据根与系数的关系得到,根据勾股定理得到:、,根据列出方程,解方程即可;(2)求出A、B坐标,设出点Q坐标,利用平行四边形的性质,分类讨论点P坐标,利用全等的性质得出P点的横坐标后,分别代入抛物线解析式,求出P点坐标;(3)过点作DH⊥轴于点,由::,可得::.设,可得点坐标为,可得.设点坐标为.可证△∽△,利用相似性质列出方程整理可得到①,将代入抛物线上,可得②,联立①②解方程组,即可解答.【题目详解】解:设,,则是方程的两根,∴.∵已知抛物线与轴交于点.∴在△中:,在△中:,∵△为直角三角形,由题意可知∠°,∴,即,∴,∴,解得:,又,∴.由可知:,令则,∴,∴.①以为边,以点、、、Q为顶点的四边形是四边形时,设抛物线的对称轴为,l与交于点,过点作⊥l,垂足为点,即∠°∠.∵四边形为平行四边形,∴∥,又l∥轴,∴∠∠=∠,∴△≌△,∴,∴点的横坐标为,∴即点坐标为.②当以为边,以点、、、Q为顶点的四边形是四边形时,设抛物线的对称轴为,l与交于点,过点作⊥l,垂足为点,即∠°∠.∵四边形为平行四边形,∴∥,又l∥轴,∴∠∠=∠,∴△≌△,∴,∴点的横坐标为,∴即点坐标为∴符合条件的点坐标为和.过点作DH⊥轴于点,∵::,∴::.设,则点坐标为,∴.∵点在抛物线上,∴点坐标为,由(1)知,∴,∵∥,∴△∽△,∴,∴,即①,又在抛物线上,∴②,将②代入①得:,解得(舍去),把代入②得:.【题目点拨】本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.24、(1)y=x2﹣2x﹣3;(2)D(0,﹣1);(3)P点坐标(﹣,0)、(,﹣2)、(﹣3,8)、(3,﹣10).【解题分析】
(1)将A,B两点坐标代入解析式,求出b,c值,即可得到抛物线解析式;(2)先根据解析式求出C点坐标,及顶点E的坐标,设点D的坐标为(0,m),作EF⊥y轴于点F,利用勾股定理表示出DC,DE的长.再建立相等关系式求出m值,进而求出D点坐标;(3)先根据边角边证明△COD≌△DFE,得出∠CDE=90°,即CD⊥DE,然后当以C、D、P为顶点的三角形与△DOC相似时,根据对应边不同进行分类讨论:①当OC与CD是对应边时,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 黄山学院《电视专题片制作》2022-2023学年第一学期期末试卷
- 淮阴师范学院《小学综合实践活动专题》2021-2022学年第一学期期末试卷
- 淮阴师范学院《广播电视采访与写作》2023-2024学年第一学期期末试卷
- 淮阴工学院《数据结构5》2021-2022学年第一学期期末试卷
- 淮阴工学院《品牌设计与推广1》2023-2024学年第一学期期末试卷
- 淮阴师范学院《安装工程造价软件应用》2023-2024学年第一学期期末试卷
- 淮阴工学院《园艺植物保护学》2021-2022学年第一学期期末试卷
- DB6505T184-2024南美白对虾淡水养殖技术规程
- 文书模板-《钢筋工实训报告》
- 实施职业健康与环境保护的有效方法探讨考核试卷
- 智能除草机器人
- 宫外孕破裂出血护理查房
- 诺如病毒应急演练方案
- 农耕研学基地可行性方案
- PCN、ECN变更管理流程
- 传菜培训课件
- 降低危重患者早期肠内营养的不耐受性品管圈课件
- 2023年秋季国家开放大学-04965-学前教育概论期末考试题带答案
- 鼻鼽变应性鼻炎中医临床诊疗方案
- 妇产科学课件:盆腔炎性疾病
- 菜市场消费者满意度调查问卷(2022版)
评论
0/150
提交评论