密克定理是几何学中关于相交圆的定理_第1页
密克定理是几何学中关于相交圆的定理_第2页
密克定理是几何学中关于相交圆的定理_第3页
密克定理是几何学中关于相交圆的定理_第4页
密克定理是几何学中关于相交圆的定理_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE4密克定理是几何学中关于相交圆的定理。1838年,奥古斯特·密克叙述并证明了数条相关定理。许多有用的定理可由其推出。1.定理陈述三圆定理:设三个圆,交于一点O,而,分别是和,和,和的另一交点。设A为的点,直线MA交于B,直线PA交于C。那么B,N,C这三点共线。逆定理:如果△ABC是三角形,M,N,P三点分别在边AB,BC,CA上,那么三角形△APM,△BMN,△CNP的外接圆交于一点O。完全四线形定理:如果ABCDEF是完全四线形,那么三角形△EAD,△EBC,△FAB△FDC的外接圆交于一点O,称为密克点。四圆定理:设,为四个圆,和是和的交点,和是和的交点,和是的交点,和是和的交点。那么,,,四点共圆当且仅当,,,四点共圆。五圆定理:设ABCDE为任意五边形,五点,分别是的交点,那么三角形△ABF,△BCG,△CDH,△DEI.△EAJ的外接圆的五个不在五边形上的交点共圆,而且穿过这些交点的圆也穿过五个外接圆的圆心。等角共轭点:描述一:三角形内一点P,过A做直线L1与AP关于角A的角平分线对称,同样过B,C分别做L2,L3.这三条直线交于P1,则P1是P的等角共轭点;描述二:设P、Q是三角形ABC内两点,∠PAB=∠QAC,∠PBC=∠QBA,∠PCB=∠QCA,满足题设条件的两点P、Q称为△ABC的等角共轭点。圆内接四边形与外切四边形当四边形与其它的知识点综合在一起时,其内容丰富多彩。在本节,我们主要介绍圆内接四边形与外切四边形的内容。对于圆内接四边形与外切四边形,显然有以下的性质:1.圆内接凸四边形的对角互补;圆内接接凹四边形的对角相等。2.圆内接凸四边形的一个外角等于其不相邻的内对角。3.圆外切四边形的对边之和相等。命题1如图,证明。证明:根据交比的定义和圆的性质,得4.托勒密定理:圆内接四边形的对边之积的和等于对角线之积。证明一在BD上选一点E,使得∠BAC=∠EAD。在ΔABC和ΔAED中,∵∠BAC=∠EAD,∠BCA=∠EDA∴ΔABC∽ΔAED,∴,即。(1)在ΔABE和ΔACD中,∵∠BAE=∠CAD,∠ABE=∠ACD∴ΔABE∽ΔACD,∴,即。(2)(1)+(2)得,即。证明二如图,因为X(BC,AD)+X(BA,CD)=1,即由正弦定理得即。5.圆内接凸四边形的密克点在一条对边交点的连线上。证明:如图,设M是密克点,连CM、EM、FM,那么∠CME=∠CBA=∠BCA=∠CDF=1800–∠CMF所以E、M、F共线。例圆内接四边形对边交点连线的平方等于由此二点向圆所作切线的平方和。证明:如图,作四边形ABCD的密克点,即ΔBCE和ΔCDF的外接圆的交点M,则M在EF上。从而有例1如图,(CD,PQ)=–1。证明:根据命题1知A(AB,CD)=B(AB,CD),即(PQ,CD)=(QP,CD)。所以(PQ,CD)=–1。本结论可叙述为:过圆外一点P任作割线PCD,则C、D、P的第四调和点在一条定直线上。命题2如图,PC,PD是切线,OP是圆的直径,过Q任作一弦AB,求证:PO平分∠APB。证明:因为PC,PD是切线,所以,所以O、A、P、B四点共圆,所以∠APO=∠ABO=∠BAO=∠BPO,即PO平分∠APB。例2过圆内一点P任作直线交圆于A、B两点,则A、B、P的第四调和点Q在一条定直线上。证明:如图,过H作HQ垂直于OP交AB于Q,那么根据命题2知HO平分∠AHB,但HQ⊥HP,从而HQ也是∠AHB的平分线。根据角平分线的性质知,(AB,PQ)=–1。所以A、B、P的第四调和点在一条定直线上。本结论可叙述为:过圆内一点P任作割线PCD,则C、D、P的第四调和点在一条定直线上。定义过一点P作直线交圆于A、B,则A、B、P的第四调和点称为P(关于圆)的共轭点。根据例1和例2知,我们有定理点P的共轭点的轨迹lp是一条直线。注:我们称lp是P的极线,而P称为lp的极点。当点P在圆上时,规定P的极线为过P的切线,而切线的极点就是切点。当点P在圆外时,P的极线就是P的切点弦所在的直线。例3设⊙O与直线l相离,过l上的点P作⊙O的切线PA、PB,则切点A、B的连线过定点。证明:连AB,过O作OH⊥l于H,且交AB于K。∵O、A、P、H共圆,∴∠OBK=∠OPA=∠OPB=∠OHB,∴ΔOHB∽ΔOBK∴OB2=OK•OH,即R2=OK•OH(其中R是⊙O的半径),从而K是一个定点,即AB过一个定点。问题探索:(1)本命题可叙述为:共线点的极线共点。(2)当l与圆相切时,结论是否仍成立?(3)当l与相交时结论是否成立?(分析:过O作l的垂线,垂足为H,则O、H、B、P、A共圆。如图,∠BHK=∠BPO=∠APO=∠ABO,故∠OHB=∠OBK,从而ΔOHB∽ΔOBK。所以,即OK为常数。所以P的切点弦通过一个定点。)(4)在(3)中,当P进入圆的内部时,情形会起什么变化?例4过圆外一点H任作一条割线交圆于两点A、B,求证:A、B处的切线的交点P在一条定直线上。证明:任作一条割线HAB,交⊙O于A、B,过H作切线HC,C是切点,作CK⊥OH于K,那么HK•OH=HC2=HA•HB∴O、K、B、A共圆,∵O、A、P、B共圆,∴O、K、B、A、P共圆,∴OH⊥KP。由此即得P在过K且垂直于OH的直线(即H的切点弦)上,所以所有的P共线。问题探索(1)本命题可叙述为:共点线的极点共线。(2)当H点在圆上时,结论是否成立?(3)当H在圆内时,结论是否成立?(分析:如图,过H作OH的垂线交圆于C,作C处的切线交OH的延长线于K,则,所以O、A、K、B、P共圆,故PK垂直于OH。但K是固定点,所以P在一条定直线上。)(4)当HAB与圆相离时,情形会起什么变化?定理共线点的极线共点,共点线的极点共线。定理过圆的内接四边形一组对边的交点作圆的切线,则两个切点,另一组对边的交点,及对角线的交点,四点共线。证明:如图,根据完全四边形的调和性可知P的极线就是QR,另一方面,P的极线就是P的切点弦XY。所以Q、R、X、Y共线。定理圆内接四边形一组对边的端点处切线的交点,对角线交点及另一组对边的交点,四点共线,且它们互相调和分割。证明:如图,因为Q的极线是PR,故Q与R是一对共轭点,同理P与R也是一对共轭点,故R的极线是PQ,即PQ的极点是R。因为PAB的极点为T,PDC的极点为S,PR的极点为Q,PQ的极点为R,而共点线的极点共线,所以Q、T、R、S共线。同理有P、U、R、V共线。设AD与PR的交点为X,则(AD,QX)=–1,从而在中心U的投影下有(TS,QR)=(AD,QX)=–1。由此定理还可得,麦克劳林定理圆外切四边形的对角线,对边切点的连线,四线共点,且对角线调和分割对边切点的连线。例练习A(切点弦专题)1.设⊙O与直线l相离,过l上的点P作⊙O的切线PA、PB,则切点A、B的连线过定点。2.设⊙O外有n个共线点Pi(i=1,2,……,n),过Pi作⊙O的切线,切点为Ai,Bi,则直线AiBi共点。3.过圆外一点任作一条割线交圆于两点,则这两点处的切线的交点在一条定直线上。4.过圆外一点P作圆的切线PA、PB,切点为A、B,连AB、OP交于K。过K任作一弦CD,则OH平分∠CHD。5.设P为圆外一点,任作圆的直径AiBi,则ΔPAiBi的垂心在一条定直线上。6.设H为锐角ΔABC的垂心,由A向以BC为直径的圆作切线AP、AQ,切点为P、Q,求证:P、H、Q三点共线。(1996年,CMO)7.直线m(不过圆心)与⊙O相交,过m在圆外的点作圆的两条切线,切点为A、B,则AB与OK交于定点(其中OK⊥m于K)。8.过⊙O内任一点K作弦AiBi(直径除外),再过Ai、Bi分别作圆的切线交于Pi,则所有Pi共线。9.设K是⊙O直径MN上异于O的一点,过K任作一弦AiBi,连AiM、BiN交于Pi,则所有Pi共线。10.设K是圆内异于圆心的任一点,过K作两条不等的弦AiBi,CiDi,连AiCi、BiDi交于Pi,则所有Pi共线。11.设AB是圆O的直径,直线m过K且与AB垂直,Qi为m上任一点,连AQi、BQi分别交圆于Di、Ci,则CiDi共点。12.设P是圆外定点,过P任作两条不相等的割线PDiAi、PCiBi。设AiBi、CiDi交于Qi,则所有Qi共线。13.四边形ABCD内接于圆,其边AB和CD的延长线交于点P,AD与BC的延长线交于点Q,由Q作圆的两条切线QE、QF,切点为E、F,求证P、E、F三点共线。14.设n为过圆心的一条直线。过圆内异于圆心的任一点K,在直线n的同侧作直线AK、BK分别交圆O于A、B,使它们与直线n成等角,则AB与n交于定点H。15.过圆外一点H作割线HBA(直径除外),试问OH上是否存在一点K,使∠BKH=∠AKO。16.如图,已知A为平面上两半径不等的⊙O1和⊙O2的一个交点,两外公切线P1P2,Q1Q2分别切两圆于P1、P2、Q1、Q2;M1、M2分别为P1Q1、P2Q2的中点,求证:∠O1AO2=∠M1AM2。17.设A、B、C、D是一条直线上依次排列的四个不同点,分别以AC、BD为直径的两圆相交于X和Y,直线XY交BC于Z。若P为直线XY上异于Z的一点,直线CP与以AC为直径的圆相交于C及M,直线BP与以BD为直径的圆相交于B及N。证明:AM、DN、XY三线共点。18.如图,设PA、PB是⊙O的切线,A、B是切点,割线PEC交AB于D,若PE=2,CD=1,求DE的长。19.直线AB与圆相切于B,弦CD经过AB的中点M,直线AC交圆于E,AD交圆于F,证明:EF//AB。20.在直角ΔABC中AB为斜边,CH为斜边上的高,以AC为半径作⊙A。过B作⊙A的任一割线交⊙A于D、E,交CH于F(D在B、F之间),又作∠ABG=∠ABD,G在⊙A上,G与D在AB异侧,求证:E、H、G共线。练习B1.四边形的每双对边的中点连线及对角线中点连线互相平分。2.若四边形的两对角线互相垂直,则一双对边的平方和等于另一双对边的和。3.四边形对边中点连线的平方和,等于两对角线平方和的一半。4.顺次连接简单四边形各边中点所成四边形的面积等于原四边形面积的一半。5.在凸四边形ABCD中,设E、F、G、H各是四边AB、BC、CD、DA的中点,I、J分别是对角线AC、BD的中点。作直线IO//BD,JO//AC,求证:SOHAE=SOEBF=SOFCG=SOGDH。6.凸多边形的内角不能有多于三个的锐角。7.凸四边形中,若一双对边的平分线或平行或重合,则他双对角相等;反之,若一双对角相等,则另一双对角的平分线平行或重合。8.设四边形ABCD有内切圆,则ΔABC与ΔCDA的内切圆相切,ΔBCD与ΔDAB的内切圆也相切。9.在圆内接四边形ABCD中,若AC平分CD,则AB2+BC2+CD2+DA2=2AC2。10.设四边形ABCD有内切圆或旁切圆⊙O,则⊙AOB与⊙COD、⊙AOD与⊙BOC分别相切。11.设四边形有一双对边相等,则它双对边的中点连线与该双对边所在直线的交角相等。12.设一直线与圆内接四边形一双对边所在直线交成相等的同侧内角,则变与他双对边所在直线交成相等的同侧内角。13.四点两两连成四个三角形,求证它们的内切圆中任两圆的公切线等于它两圆的公切线,但这些公切线以落在各连线上面的为限。14.既有内切圆又有外接圆的四边形其对边切点的连线必互相垂直。15.设四边形无外接圆,两双对边的中垂线垂直相交,则这两交点的连线垂直于两对角线中点的连线。16.以一简单四边形的每边向外作正方形,求证对边上二形的中心连线垂直并且相等。17.高逡一圆内接四边形每双对边所在直线的交角的平分线,则所作四线交成一个矩形。18.圆上四点两两连成四个三角形,它们的内心是一个矩形的顶点。19.在四边形ABCD中,设AD≠BC,内外分AB边于E、F,又内外分CD边于G、H,使,求证:EG⊥FH。20.设四边形ABCD内接于一圆,作弦AE及BF,若AE//BD且BF//AC,则EF//CD。21.ABCD是圆内接四边形,过A、B任作一圆交直线AD、BC、AC、BD于E、F、G、H,则CD//EF//GH。22.ABCD是圆内接四边形,过A、B任作一圆交直线AD、BC、AC、BD于E、F、G、H,设BE与AC,AF与BD,BG与AD,AH与BC交于E′、F′、G′、H′,则CD//E′F′//G′H′。23.设四边形有一角是直角且对角线相等,则对边的中垂线交点与该直角的顶点共线。24.在圆内接四边形中,设每边两端所引邻接边的长线相交,则所得四交点与四边形的对角线交点及外接圆心共线。24.;圆上四点两两连成四个三角形,它们的内心、旁心合计十六点分配在八条直线上,每线上四点,而这八线是两组互相垂直的平行线,每组含四线。25.设四边形ABCD内接于圆O,且AC⊥BD,则ΔOAB、ΔOBC、ΔOCD、ΔODA的垂心共线。26.圆内接四边形的一双对边(所在直线)交角的平分线,与他双对边(所在直线)交角的平分线分别垂直,两垂足与两对角线的中点组成调和点列。27.设自四边形的对角线的交点引直线平行于每边而与对边(所在直线)相交,则四交点共线。28.在四边形ABCD中,A′、C′是AC上的两点,B′、D′是BD上的两点。若A′B′//AB,B′C′//BC,C′D′//CD,则D′A′//DA,且A′B′与CD,B′C′与DA,C′D′与AB,D′A′与BC的交点共线。29.在四边形ABCD中,O是AC与BD的交点,一直线交AB、BC、CD、DA于E、F、G、H,连EO、FO、GO、HO,设依次各交CD、DA、AB、BC于E′、F′、G′、H′,求证这四交点共线。30.在四边形ABCD中,A′、C′是AC上的两点,B′、D′是BD上的两点。若A′B′与AB、B′C′与BC、C′D′与CD的交点共线,则D′A′与DA的交点也在此线上,且A′B′与CD,B′C′与DA,C′D′与AB,D′A′与BC的交点共线。31.在一个四边形中,若有一双对角的平分线与另一对角线共点,则它双对角的平分线也与另一对角线共点。32.在二对角互相垂直的四边形中,过对角线交点向每边作长线,得四垂足,并设所作垂线又与对边相交,得四交点,则所得八点共圆。33.若一个四边形有等角共轭点,那么这双等角共轭点在各边(所在直线)上的射影必共圆。34.凸四边形各外角的平分线顺次相交,则所得四交点共圆。35.P是四边形ABCD的对角线交点,设⊙PAB与⊙PCD交于Q,⊙PAD与⊙PBC交于R,则P、Q、R三点与AC、BD的中点,五点共圆。36.圆内接四边形两对角线的中点,在四边中点所连成的平行四边形各边(所在直线)上的射影八点共圆。37.设圆内接四边形的两对角线互相垂直,则其交点在四边上的射影与四边的中点,八点共圆。38.在四边形ABCD中,AC⊥BD,A′、C′是AC上的两点,B′、D′是BD上的两点。若A′B′⊥AB、B′C′⊥BC、C′D′⊥CD,则D′A′⊥DA,且四垂足及A′B′与CD,B′C′与DA,C′D′与AB,D′A′与BC的交点,八点共圆。39.平面上无三点共线的四点两两相连所的四个三角形,它们的九点圆共点。40.一个完全四边形中包含三个四边形(凸的、凹的、折的各一个),每个四边形的对边都叫作完全四边形的对节。通过完全四边形每双对节的中点及它们所在边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论