版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年浙江省舟山市高职单招数学备考试卷题库(含答案)学校:________班级:________姓名:________考号:________
一、单选题(50题)1.4位同学每人从甲、乙、丙3门课程中选修1门,则恰有2人选修课程甲的不同选法共有()
A.12种B.24种C.30种D.36种
2.不等式(x+2)(x−3)≤0的解集为()
A.ØB.{x|−2≤x≤3}C.RD.{x|x≥3或x≤−2}
3.经过两点A(4,0),B(0,-3)的直线方程是()
A.3x-4y-12=0
B.3x+4y-12=0
C.4x-3y+12=0
D.4x+3y+12=0
4.已知向量a=(x,-3),b=(3,1),若a⊥b,则x=()
A.-9B.9C.-1D.1
5.倾斜角为135°,且在x轴上截距为3的直线方程是()
A.x+y+3=0B.x+y-3=0C.x-y+3=0D.x-y-3=0
6.“θ是锐角”是“sinθ>0”的()
A.充分不必条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
7.设奇函数f(x)是定义在R上的增函数,且f(-1)=2,且满足f(x²-2x+2)≥一2,则x的取值范围是()
A.ØB.(2,+∞)C.RD.(2,+∞)D∪(-∞,0)
8.cos78°*cos18°+sin18°sin102°=()
A.-√3/2B.√3/2C.-1/2D.1/2
9.从标有1,2,3,4,5的5张卡片中任取2张,那么这2张卡片数字之积为偶数的概率为()
A.7/20B.3/5C.7/10D.4/5
10.已知向量a=(2,1),b=(3,5),则|2a一b|=
A.2B.√10C.√5D.2√2
11.已知圆x²+y²=a与直线z+y-2=0相切,则a=()
A.2√2B.2C.3D.4
12.“ab>0”是“a/b>0”的()
A.充分不必要条件B.必要不充分条件C.必要不充分条件D.既不充分也不必要条件
13.已知x,2x+2,3x+3是一个等比数列的前三项,则x的值为()
A.-4或-1B.-4C.-1D.4或1
14.已知函数f(x)=x²-2x+b(b为实数)则下列各式中成立的是()
A.f(1)<f(0)
B.f(0)<f(1)
C.f(0)<f(4)
D.f(1)<f(4)
15.现有3000棵树,其中400棵松树,现在抽取150树做样本其中抽取松树的棵数为()
A.15B.20C.25D.30
16.“x>0”是“x≠0”的()
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
17.已知A(1,1),B(-1,0),C(3,-1)三点,则向量AB*向量AC=()
A.-6B.-2C.2D.3
18.若不等式2x²+2ax+b<0的解集是{x|-1<x
A.-5B.1C.2D.3
19.如果椭圆的一个焦点坐标是为(3,0),一个长轴顶点为(−5,0),则该椭圆的离心率为()
A.3/5B.-3/5C.1D.2
20.下列说法中,正确的个数是()①如果两条平行直线中的一条和一个平面相交,那么另一条直线也和这个平面相交;②一条直线和另一条直线平行,它就和经过另一条直线的任何平面都平行;③经过两条异面直线中的一条直线,有一个平面与另一条直线平行;④两条相交直线,其中一条直线与一个平面平行,则另一条直线一定与这个平面平行.
A.0B.1C.2D.3
21.函数y=2x-1的反函数为g(x),则g(-3)=()
A.-1B.9C.1D.-9
22.与y=sinx相等的是()
A.y=cos(x+Π)B.y=cos(x-Π)C.y=cos(Π/2-x)D.y=cos(Π/2+x)
23.-240°是()
A.第一象限的角B.第二象限的角C.第三象限的角D.第四象限的角
24.若向量a=(-2,4)与b=(3,y)平行,则y的值是()
A.-6B.6C.-4D.4
25.从甲地到乙地有3条路线,从乙地到丙地有4条路线,则从甲地经乙地到丙地的不同路线共有()
A.3种B.4种C.7种D.12种
26.设集合M={x│0≤x<3,x∈N},则M的真子集个数为()
A.3B.6C.7D.8
27.过抛物线C:y²=4x的焦点F,且垂直于x轴的直线交抛物线C于A、B两点,则|AB|=()
A.1B.4C.4√2D.8
28.若正实数x,y满足2x+y=1,则1/x+1/y的最小值为()
A.1/2B.1C.3+2√2D.3-2√2
29.不等式(x²-4x−5)(x²+8)<0的解集是()
A.{x|-1<x<5}
B.{x|x<-1或x>5}
C.{x|0<x<5}
D.{x|−1<x<0}
30.若向量a,b,c满足a∥b且a⊥c,则c·(a+2b)=()
A.4B.3C.2D.0
31.函数y=4x²的单调递增区间是().
A.(0,+∞)B.(1/2,+∞)C.(-∞,0)D.(-∞,-1/2)
32.在△ABC中,内角A,B满足sinAsinB=cosAcosB,则△ABC是()
A.等边三角形B.钝角三角形C.非等边锐角三角形D.直角三角形
33.倾斜角为60°,且在y轴上截距为−3的直线方程是()
A.√3x-y+3=0B.√3x-y-3=0C.3x-√y+3=0D.x-√3y-3=0
34.已知两个班,一个班35个人,另一个班30人,要从两班中抽一名学生,则抽法共有()
A.1050种B.65种C.35种D.30种
35.设a>b,c>d,则下列不等式成立的是()
A.ac>bdB.b+d
d/bD.a-c>b-d
36.已知点A(-2,2),B(1,5),则线段AB的中点坐标为()
A.(-1,7)B.(3/2,3/2)C.(-3/2,-3/2)D.(-1/2,7/2)
37.同时掷两枚骰子,所得点数之积为12的概率为()
A.1/12B.1/4C.1/9D.1/6
38.已知向量a=(2,-3),向量b=(一6,y),且a⊥b,则y=()
A.-9B.9C.4D.-4
39.在等比数列{an}中,已知a₃,a₅是方程x²-12x+9=0的两个根,则a₄=()
A.12B.9C.±2√3D.±3
40.某射手射中10环的概率为0.28,射中9环的概率为0.24,射中8环的概率为0.19,则这个射手一次射中低于8环的概率为()
A.0.71B.0.29C.0.19D.0.52
41.在空间中,直线与平面的位置关系是()
A.平行B.相交C.直线在平面内D.平行、相交或直线在平面内
42.下列函数中在定义域内既是奇函数又是增函数的是()
A.y=x-3B.y=-x²C.y=3xD.y=2/x
43.已知sinθ+cosθ=1/3,那么sin2θ的值为()
A.2√2/3B.-2√2/3C.8/9D.-8/9
44.已知角α的终边上一点P(-3,4),则cosα的值为()
A.3/5B.4/5C.-3/5D.-4/5
45.若直线l过点(-1,2)且与直线2x-3y+1=0平行,则l的方程是().
A.3x+2y+8=0B.2x-3y+8=0C.2x-3y-8=0D.3x+2y-8=0
46.直线y=x+1与圆x²+y²=1的位置关系是()
A.相切B.相交但直线不过圆心C.直线过圆心D.相离
47.“0<x<1”是“x²
A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件
48.log₁₀1000等于()
A.1B.2C.3D.4
49.扔两个质地均匀的骰子,则朝上的点数之和为5的概率是()
A.1/6B.1/9C.1/12D.1/18
50.若P是两条异面直线l,m外的任意一点,则()
A.过点P有且仅有一条直线与l,m都平行
B.过点P有且仅有一条直线与l,m都垂直
C.过点P有且仅有一条直线与l,m都相交
D.过点P有且仅有一条直线与l,m都异面
二、填空题(20题)51.在区间[-2,3]上随机选取一个数X,则X≤1的概率为________。
52.已知点A(1,2)和点B(3,-4),则以线段AB的中点为圆心,且与直线x+y=5相切的圆的标准方程是________。
53.sin(-60°)=_________。
54.不等式x²-2x≤0的解集是________。
55.已知圆x²+y²一2kx+2y+1=0(k>0)的面积为16Π,则k=________。
56.若等边三角形ABC的边长为2,则,AB·BC=________。
57.将一个容量为n的样本分成3组,已知第1,2组的频率为0.2,0.5,第三组的频数为12,则n=________。
58.f(x)是定义在(0,+∞)上的增函数,则不等式f(x)>f(2x-3)的解集是________。
59.圆M:x²+4x+y²=0上的点到直l:y=2x-1的最短距离为________。
60.已知向量a=(1/2,cosα),b=(-√3/2,sinα),且a⊥b,则sinα=______。
61.过点(2,0)且与圆(x-1)²+(y+1)²=2相切的直线方程为________。
62.若函数f(x)=x²+(b-3)x+2是偶函数,则b=________,增区间为________。
63.以点M(3,1)为圆心的圆与x轴相交于A,B两点若🔺MAB为直角三角形、则该圆的标准方程为________。
64.函数y=(cos2x-sin2x)²的最小正周期T=________。
65.甲有100,50,5元三张纸币,乙有20,10元两张纸币,两人各取一张自己的纸币,比较纸币大小,则甲的纸币比乙的纸币小的概率=_________。
66.已知平面向量a=(1,2),b=(-2,m),且a⊥b,则a+b=_________。
67.设集合A={m,n,p},试写出A的所有子集,并指出其中的真子集。
68.已知数据10,x,11,y,12,z的平均数为8,则x,y,z的平均数为________。
69.设{an}是等差数列,且a₃=5,a₅=9,则a₂·a₆=()
70.以点(−2,−1)为圆心,且过p(−3,0)的圆的方程是_________;
三、计算题(10题)71.已知三个数成等差数列,它们的和为9,若第三个数加上4后,新的三个数成等比数列,求原来的三个数。
72.数列{an}为等差数列,a₁+a₂+a₃=6,a₅+a₆=25,(1)求{an}的通项公式;(2)若bn=a₂n,求{bn}前n项和Sn;
73.圆(x-1)²+(x-2)²=4上的点到直线3x-4y+20=0的最远距离是________。
74.已知集合A={X|x²-ax+15=0},B={X|x²-5x+b=0},如果A∩B={3},求a,b及A∪B
75.我国是一个缺水的国家,节约用水,人人有责;某市为了加强公民的节约用水意识,采用分段计费的方法A)月用水量不超过10m³的,按2元/m³计费;月用水量超过10m³的,其中10m³按2元/m³计费,超出部分按2.5元/m³计费。B)污水处理费一律按1元/m³计费。设用户用水量为xm³,应交水费为y元(1)求y与x的函数关系式(2)张大爷家10月份缴水费37元,问张大爷10月份用了多少水量?
76.某社区从4男3女选2人做核酸检测志愿者,选中一男一女的概率是________。
77.计算:(4/9)^½+(√3+√2)⁰+125^(-⅓)
78.求函数y=cos²x+sinxcosx-1/2的最大值。
79.解下列不等式:x²≤9;
80.已知在等差数列{an}中,a1=2,a8=30,求该数列的通项公式和前5项的和S5;
参考答案
1.B[解析]讲解:C²₄*2*2=24
2.B
3.A由直线方程的两点式可得经过两点两点A(4,0),B(0,-3)的直线方程为:(y-0)/(-3-0)=(x-0)/(0-4),既3x-4y-12=0故选A.考点:直线的两点式方程.
4.D
5.B[答案]B[解析]讲解:考察直线方程的知识,斜率为倾斜角的正切值k=tan135°=-1,x轴截距为3则过定点(3,0),所以直线方程为y=-(x-3)即x+y-3=0,选B
6.A由sinθ>0,知θ为第一,三象限角或y轴正半轴上的角,选A!
7.C
8.D
9.C
10.B
11.C
12.C
13.B
14.A
15.B
16.A[答案]A[解析]讲解:逻辑判断题,x>0肯定x≠0,但x≠0不一定x>0,所以是充分不必要条件
17.BAB=(-1,0)-(1,1)=(-2,-1),AC=(3,-1)-(1,1)=(2,-2),AB*AC=(-2)*2+(-1)´*(-2)=-2考点:平面向量数量积.
18.A
19.A
20.C
21.A
22.C[解析]讲解:考察诱导公式,“奇变偶不变,符号看象限”,A,B为余弦,C,D为正弦,只有C是正的,选C
23.B
24.A
25.D
26.C[解析]讲解:M的元素有3个,子集有2^3=8个,减去一个自身,共有7个真子集。
27.B
28.C考点:均值不等式.
29.A[解析]讲解:一元二次不等式的考察,由于括号内x²+8始终是大于0的,所以整体的正负是由前一个括号控制的,所以等价于x²-4x−5<0,解得1<x<5
30.D
31.A[解析]讲解:二次函数的考察,函数对称轴为y轴,则单调增区间为(0,+∞)
32.D
33.B
34.B
35.B本题是选择题可以采用特殊值法进行检验。因为a>b,c>d,所以设B=-1,a=-2,d=2,c=3,故选B.考点:基本不等式
36.D考点:中点坐标公式应用.
37.C
38.D
39.D
40.B
41.D
42.C
43.D
44.C
45.B[解析]讲解:考察直线方程,平行直线方程除了常数,其余系数成比例,排除A,D,直线过点(-1,2),则B
46.B圆x²+y²=1的圆心坐标为(0,0),半径长为1,则圆心到直线y=x+1的距离d=1/√2=√2/2,因为0<√2/2<1,所以直线y=x+1与圆x²+y²=1相交但直线不过圆心.考点:直线与圆的位置关系.
47.A
48.C
49.B
50.B
51.3/5
52.(x-2)²+(y+1)²=8
53.-√3/2
54.[0,2]
55.4
56.-2
57.40
58.(3/2,3)
59.√5-2
60.√3/2
61.x+y-2=0
62.3,[0,+∞]
63.(x-3)²+(y-1)²=2
64.Π/2
65.1/3
66.(-1,3)
67.所有的子集:Φ,﹛m﹜,﹛n﹜,﹛p﹜,﹛m,n﹜,﹛m,p﹜,﹛n,p﹜,﹛m,n,p﹜。真子集:Φ,﹛m﹜,﹛n﹜,﹛p﹜,﹛m,n﹜,﹛m,p﹜,﹛n,p﹜。
68.5
69.33
70.(x+2)²+(y+1)²=2
71.解:设原来三个数为a-d,a,a+d,则(a-d)+a+(a+d)=9所以3a=9,a=3因为三个数为3-d,3,3+d又因为3-d,3,7+d成等比数列所以(3-d)(7+d)=3²所以d=2或d=-6①当d=2时,原来这三个数为1,3,5②当d=-6时,原来三个数为9,3,-3
72.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 墙板钉项目可行性研究报告
- 高分培优讲座 雪线和林线 高考第一轮地理复习课件
- 小班数学教案:抓老鼠
- 大数据在智慧医疗
- 2023-2024学年广东省深圳市盐田区六年级上学期期末英语试卷
- 一年级上册数学教案-第六单元第2课时 11~20各数的认识(2) 人教版
- 脚手架坍塌防范措施
- 急救药品、物品管理制度
- 第五单元《透镜及其应用》3.透镜的应用(分层训练)(解析版)
- 2.2享受学习-课时检测设计
- 第2课+互联网应用新特征+课件++2024-2025学年人教版(2024)初中信息技术七年级全一册
- 《密封知识培训》课件
- 硬件测试岗位招聘笔试题及解答(某大型央企)2024年
- 2024年中国光学太阳镜片市场调查研究报告
- 2023-2024学年广东省广州市白云区九年级(上)期末英语试卷
- 2024-2030年中国体外培育牛黄行业市场竞争格局及投资价值分析报告
- 2024年全国企业员工全面质量管理知识竞赛活动题库(完整)
- 2023年四川农信(农商行)招聘考试真题
- 专题02 标点、病句、排序 练习题 七年级语文上册人教统编版2024
- 中医诊所药品名录表
- 2023-2024学年天津市西青区八年级(上)期末物理试卷
评论
0/150
提交评论