福建省龙岩市名校2024届中考数学模拟精编试卷含解析_第1页
福建省龙岩市名校2024届中考数学模拟精编试卷含解析_第2页
福建省龙岩市名校2024届中考数学模拟精编试卷含解析_第3页
福建省龙岩市名校2024届中考数学模拟精编试卷含解析_第4页
福建省龙岩市名校2024届中考数学模拟精编试卷含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省龙岩市名校2024届中考数学模拟精编试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列图形中,可以看作中心对称图形的是()A. B. C. D.2.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为,,,,则四人中成绩最稳定的是()A.甲 B.乙 C.丙 D.丁3.若,则()A. B. C. D.4.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9π B.10π C.11π D.12π5.若分式有意义,则x的取值范围是()A.x>3 B.x<3 C.x≠3 D.x=36.如图是一个由4个相同的正方体组成的立体图形,它的左视图为()A. B. C. D.7.学完分式运算后,老师出了一道题“计算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式.其中正确的是()A.小明 B.小亮 C.小芳 D.没有正确的8.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.42 B.96 C.84 D.489.在平面直角坐标系中,将抛物线绕着它与轴的交点旋转180°,所得抛物线的解析式是().A. B.C. D.10.下列运算正确的是()A.a•a2=a2 B.(ab)2=ab C.3﹣1= D.二、填空题(共7小题,每小题3分,满分21分)11.计算:=____.12.已知x=2是一元二次方程x2﹣2mx+4=0的一个解,则m的值为.13.把多项式3x2-12因式分解的结果是_____________.14.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为_________海里.(结果保留根号)15.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______.16.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB=S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为______.17.在平面直角坐标系xOy中,将抛物线y=3(x+2)2-1平移后得到抛物线y=3x2+2.请你写出一种平移方法.答:________.三、解答题(共7小题,满分69分)18.(10分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?19.(5分)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上.(I)计算△ABC的边AC的长为_____.(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB.当PQ+QB取得最小值时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_____(不要求证明).20.(8分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?21.(10分)解方程:=1.22.(10分)甲、乙、丙3名学生各自随机选择到A、B2个书店购书.(1)求甲、乙2名学生在不同书店购书的概率;(2)求甲、乙、丙3名学生在同一书店购书的概率.23.(12分)某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A,B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多可载该校师生的人数设学校租用A型号客车x辆,租车总费用为y元.求y与x的函数解析式,请直接写出x的取值范围;若要使租车总费用不超过21940元,一共有几种租车方案?哪种租车方案总费用最省?最省的总费用是多少?24.(14分)如图,抛物线y=ax2+ax﹣12a(a<0)与x轴交于A、B两点(A在B的左侧),与y轴交于点C,点M是第二象限内抛物线上一点,BM交y轴于N.(1)求点A、B的坐标;(2)若BN=MN,且S△MBC=,求a的值;(3)若∠BMC=2∠ABM,求的值.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】

根据中心对称图形的概念求解.【题目详解】解:A、不是中心对称图形,故此选项错误;

B、是中心对称图形,故此选项正确;

C、不是中心对称图形,故此选项错误;

D、不是中心对称图形,故此选项错误.

故选:B.【题目点拨】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、D【解题分析】

根据方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.【题目详解】∵0.45<0.51<0.62,∴丁成绩最稳定,故选D.【题目点拨】此题主要考查了方差,关键是掌握方差越小,稳定性越大.3、D【解题分析】

等式左边为非负数,说明右边,由此可得b的取值范围.【题目详解】解:,

,解得故选D.【题目点拨】本题考查了二次根式的性质:,.4、B【解题分析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【题目详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π,故选B.【题目点拨】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键.5、C【解题分析】

试题分析:∵分式有意义,∴x﹣3≠0,∴x≠3;故选C.考点:分式有意义的条件.6、B【解题分析】

根据左视图的定义,从左侧会发现两个正方形摞在一起.【题目详解】从左边看上下各一个小正方形,如图故选B.7、C【解题分析】试题解析:=====1.所以正确的应是小芳.故选C.8、D【解题分析】

由平移的性质知,BE=6,DE=AB=10,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=1.故选D.【题目点拨】本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.9、B【解题分析】

把抛物线y=x2+2x+3整理成顶点式形式并求出顶点坐标,再求出与y轴的交点坐标,然后求出所得抛物线的顶点,再利用顶点式形式写出解析式即可.【题目详解】解:∵y=x2+2x+3=(x+1)2+2,

∴原抛物线的顶点坐标为(-1,2),

令x=0,则y=3,

∴抛物线与y轴的交点坐标为(0,3),

∵抛物线绕与y轴的交点旋转180°,

∴所得抛物线的顶点坐标为(1,4),

∴所得抛物线的解析式为:y=-x2+2x+3[或y=-(x-1)2+4].

故选:B.【题目点拨】本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化可以使求解更简便.10、C【解题分析】

根据同底数幂的乘法法则对A进行判断;根据积的乘方对B进行判断;根据负整数指数幂的意义对C进行判断;根据二次根式的加减法对D进行判断.【题目详解】解:A、原式=a3,所以A选项错误;B、原式=a2b2,所以B选项错误;C、原式=,所以C选项正确;D、原式=2,所以D选项错误.故选:C.【题目点拨】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.二、填空题(共7小题,每小题3分,满分21分)11、1【解题分析】

根据算术平方根的定义进行化简,再根据算术平方根的定义求解即可.【题目详解】解:∵12=21,

∴=1,

故答案为:1.【题目点拨】本题考查了算术平方根的定义,先把化简是解题的关键.12、1.【解题分析】试题分析:直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.试题解析:∵x=1是一元二次方程x1-1mx+4=0的一个解,∴4-4m+4=0,∴m=1.考点:一元二次方程的解.13、3(x+2)(x-2)【解题分析】

因式分解时首先考虑提公因式,再考虑运用公式法;多项式3x2-12因式分解先提公因式3,再利用平方差公式因式分解.【题目详解】3x2-12=3()=3.14、5【解题分析】

如图,作BH⊥AC于H.在Rt△ABH中,求出BH,再在Rt△BCH中,利用等腰直角三角形的性质求出BC即可.【题目详解】如图,作BH⊥AC于H.

在Rt△ABH中,∵AB=10海里,∠BAH=30°,

∴∠ABH=60°,BH=AB=5(海里),

在Rt△BCH中,∵∠CBH=∠C=45°,BH=5(海里),

∴BH=CH=5海里,

∴CB=5(海里).

故答案为:5.【题目点拨】本题考查了解直角三角形的应用-方向角问题,解题的关键是学会添加常用辅助线,构造特殊三角形解决问题.15、等【解题分析】

根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,所以解析式满足a<0,b=0,c=0即可.【题目详解】解:根据二次函数的图象最高点是坐标原点,可以得到a<0,b=0,c=0,例如:.【题目点拨】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义.16、4【解题分析】分析:首先由S△PAB=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.详解:设△ABP中AB边上的高是h.∵S△PAB=S矩形ABCD,∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=4,AE=2+2=4,∴BE=,即PA+PB的最小值为4.故答案为4.点睛:本题考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.17、答案不唯一【解题分析】分析:把y改写成顶点式,进而解答即可.详解:y先向右平移2个单位长度,再向上平移3个单位得到抛物线.故答案为y先向右平移2个单位长度,再向上平移3个单位得到抛物线.点睛:本题考查了二次函数图象与几何变换:先把二次函数的解析式配成顶点式为y=a(x-)²+,然后把抛物线的平移问题转化为顶点的平移问题.三、解答题(共7小题,满分69分)18、(1)20%;(2)12.1.【解题分析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7100(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.试题解析:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7100(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去).答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1310=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.1%.故a的值至少是12.1.考点:一元二次方程的应用;一元一次不等式的应用;最值问题;增长率问题.19、作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小【解题分析】

(1)利用勾股定理计算即可;(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.【题目详解】解:(1)AC==.故答案为.(2)作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.

故答案为作线段AB关于AC的对称线段AB′,作BQ′⊥AB′于Q′交AC于P,作PQ⊥AB于Q,此时PQ+QB的值最小.【题目点拨】本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型.20、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球.【解题分析】

(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.【题目详解】(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,依题意,得:,解得:.答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,依题意,得:60m+45(50﹣m)≤2550,解得:m≤1.答:最多可以购进1筒甲种羽毛球.【题目点拨】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.21、x=1【解题分析】

方程两边同乘转化为整式方程,解整式方程后进行检验即可得.【题目详解】解:方程两边同乘得:,整理,得,解这个方程得,,经检验,是增根,舍去,所以,原方程的根是.【题目点拨】本题考查了解分式方程,解分式方程的关键是方程两边同乘分母的最简公分母化为整式方程然后求解,注意要进行检验.22、(1)P=;(2)P=.【解题分析】试题分析:依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.试题解析:(1)甲、乙两名学生到A、B两个书店购书的所有可能结果有:

从树状图可以看出,这两名学生到不同书店购书的可能结果有AB、BA共2种,

所以甲乙两名学生在不同书店购书的概率P(甲、乙2名学生在不同书店购书)=;(2)甲、乙、丙三名学生AB两个书店购书的所有可能结果有:

从树状图可以看出,这三名学生到同一书店购书的可能结果有AAA、BBB共2种,

所以甲乙丙到同一书店购书的概率P(甲、乙、丙3名学生在同一书店购书)=.点睛:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.23、(1)21≤x≤62且x为整数;(2)共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,租金最少,为19460元.【解题分析】

(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式,再根据AB两种车至少要能坐1441人即可得取x的取值范围;(2)由总费用不超过21940元可得关于x的不等式,解不等式后再利用函数的性质即可解决问题.【题目详解】(1)由题意得y=380x+280(62-x)=100x+17360,∵30x+20(62-x)≥1441,∴x≥20.1,∴21≤x≤62且x为整数;(2)由题意得100x+17360≤21940,解得x≤45.8,∴21≤x≤45且x为整数,∴共有25种租车方案,∵k=100>0,∴y随x的增大而增大,当x=21时,y有最小值,y最小=100×21+17360=19460,故共有25种租车方案,当租用A型号客车21辆,B型号客车41辆时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论