小升初专项训练几何篇 公开课教学设计_第1页
小升初专项训练几何篇 公开课教学设计_第2页
小升初专项训练几何篇 公开课教学设计_第3页
小升初专项训练几何篇 公开课教学设计_第4页
小升初专项训练几何篇 公开课教学设计_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

名校真题测试卷2(几何篇一)时间:15分钟满分5分姓名_________测试成绩_________1如图,在三角形ABC中,,D为BC的中点,E为AB上的一点,且BE=AB,已知四边形EDCA的面积是35,求三角形ABC的面积.2四个完全一样的直角三角形和一个小正方形拼成一个大正方(如图)如果小正方形面积是1平方米,大正方形面积是5平方米,那麽直角三角形中,最短的直角边长度是______米.3一块三角形草坪前,工人王师傅正在用剪草机剪草坪.一看到小灵通,王师傅热情地招呼,说:“小灵通,听说你很会动脑筋,我也想问问你,这块草坪我把它分成东、西、南、北四部分(如图).修剪西部、东部、南部各需10分钟,16分钟,20分钟.请你想一想修剪北部需要多少分钟?4右图中AB=3厘米,CD=12厘米,ED=8厘米,AF=7厘米.四边形ABDE的面积是平方厘米.5三角形ABC中,C是直角,已知AC=2,CD=2,CB=3,AM=BM,那么三角形AMN(阴影部分)的面积为多少?希望考入重点中学?奥数网是我们成就梦想的地方!希望考入重点中学?奥数网是我们成就梦想的地方!一、小升初考试热点及命题方向几何问题是小升初考试的重要内容,分值一般在12-14分(包含1道大题和2道左右的小题)。尤其重要的就是平面图形中的面积计算,几何从内容方面,可以简单的分为直线形面积(三角形四边形为主),圆的面积以及二者的综合。其中直线形面积近年来考的比较多,值得我们重点学习。从解题方法上来看,有割补法,代数法等,有的题目还会用到有关包含与排除的知识。三、典型例题解析1等积变换在三角形中的运用首先我们来讨论一下和三角形面积有关的问题,大家都知道,三角形的面积=1/2×底×高因此我们有【结论1】等底的三角形面积之比等于对应高的比【结论2】等高的三角形面积之比等于对应底的比这2个结论看起来很显然,可大家小看它们,在许多和三角形面积比有关的题目中它们都能发挥巨大的作用,因为它们把三角形的面积比转化为了线段的比,我们来看下面的例题。【例1】(★★)如图,四边形ABCD中,AC和BD相交于O点,三角形ADO的面积=5,三角形DOC的面积=4,三角形AOB的面积=15,求三角形BOC的面积是多少?【拓展】S△AOD×S△BOC=S△COD×S△AOB,也适用于任意四边形。【练习】如下图,某公园的外轮廓是四边形ABCD,被对角线AC、BD分成四个部分,△AOB面积为1平方千米,△BOC面积为2平方千米,△COD的面积为3平方千米,公园陆地的面积是平方千米,求人工湖的面积是多少平方千米? 【例2】(★★)将下图中的三角形纸片沿虚线折叠得到右图,其中的粗实线图形面积与原三角形面积之比为2:3。已知右图中3个阴影的三角形面积之和为1,那么重叠部分的面积为多少?燕尾定理在三角形中的运用下面我们再介绍一个非常有用的结论:【燕尾定理】:在三角形ABC中,AD,BE,CF相交于同一点O,那么S△ABO:S△ACO=BD:DC【例3】(★★★)在△ABC中=2:1,=1:3,求=?【例4】(★★★)三角形ABC中,C是直角,已知AC=2,CD=2,CB=3,AM=BM,那么三角形AMN(阴影部分)的面积为多少?定理需定理需牢记做题有信心!平行线定理在三角形中的运用(热点★★★)下面我们再来看一个重要定理:平行线的相关定理:(即利用求面积来间接求出线段的比例关系)同学们应该对下图所示的图形非常熟悉了.相交线段AD和AE被平行线段BC和DE所截,得到的三角形ABC和ADE形状完全相似.所谓“形状完全相似”的含义是:两个三角形的对应角相等,对应边成比例.体现在右图中,就是AB:AD=BC:DE=AC:CE=三角形ABC的高:三角形ADE的高.这种关系称为“相似”,同学们上了中学将会深入学习.相似三角形对应边的比例关系在解几何问题的时候非常有用,要多加练习.在实际运用的时候,相似的三角形往往作为图形的一部分,有时还要经过翻转、平移等变化(如右下图),往往不易看出相似关系.如(右下图)AB平行于DE,有比例式AB:DE=AC:CE=BC:CD,三角形ABC与三角形DEC也是相似三角形.下图形状要牢记并且要熟练掌握比例式.【例5】(★★)如图所示,BD,CF将长方形ABCD分成4块,△DEF的面积是4cm,△CED的面积是6cm。问:四边形ABEF的面积是多少平方厘米?【例6】(★★★)如右图,单位正方形ABCD,M为AD边上的中点,求图中的阴影部分面积。【例7】(★★★)如图,正方形ABCD的面积是120平方厘米,E是AB的中点,F是BC的中点,四边形BGHF的面积是________平方厘米。利用“中间桥梁”联系两块图形的面积关系【例8】(★★)如图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG为5厘米,求它的宽DE等于多少厘米?【例9】(★★)如下图所示,四边形ABCD与DEFG都是平行四边形,证明它们的面积相等。5差不变原理的运用【例10】(★★★)左下图所示的ABCD的边BC长10cm,直角三角形BCE的直角边EC长8cm,已知两块阴影部分的面积和比△EFG的面积大10cm2,求CF的长。【例11】(★★★)如图,ABCG是4×7的长方形,DEFG是2×10的长方形,那么,三角形BCM的面积与三角形DCM的面积之差是多少?[拓展]:如图,已知圆的直径为20,S1-S2=12,求BD的长度?6其他常考题型【例12】(★★)下图中,五角星的五个顶角的度数和是多少?【例13】用同样大小的22个小纸片摆成下图所示的图形,已知小纸片的长是18厘米,求图中阴影部分的面积和。小结本讲主要接触到以下几种典型题型:1)等积变换在三角形中的运用。参见例1,22)燕尾定理在三角形中的运用。参见例3,43)平行线定理在三角形中的运用。参见例5,6,74)利用“中间桥梁”联系两块图形的面积关系。参见例8,95)差不变原理的运用。参见例10,116)其他常考题型。参见例12,13【课外知识】春秋战国时代,一位父亲和他的儿子出征打战。父亲已做了将军,儿子还只是马前卒。又一阵号角吹响,战鼓雷鸣了,父亲庄严地托起一个箭囊,其中插着一只箭。父亲郑重对儿子说:“这是家袭宝箭,配带身边,力量无穷,但千万不可抽出来。”那是一个极其精美的箭囊,厚牛皮打制,镶着幽幽泛光的铜边儿,再看露出的箭尾。一眼便能认定用上等的孔雀羽毛制作。儿子喜上眉梢,贪婪地推想箭杆、箭头的模样,耳旁仿佛嗖嗖地箭声掠过,敌方的主帅应声折马而毙。果然,配带宝箭的儿子英勇非凡,所向披靡。当鸣金收兵的号角吹响时,儿子再也禁不住得胜的豪气,完全背弃了父亲的叮嘱,强烈的欲望驱赶着他呼一声就拔出宝箭,试图看个究竟。骤然间他惊呆了。一只断箭,箭囊里装着一只折断的箭。我一直刳着只断箭打仗呢!儿子吓出了一身冷汗,仿佛顷刻间失去支柱的房子,轰然意志坍塌了。结果不言自明,儿子惨死于乱军之中。拂开蒙蒙的硝烟,父亲拣起那柄断箭,沉重地啐一口道:“不相信自己的意志,永远也做不成将军。”把胜败寄托在一只宝箭上,多么愚蠢,而当一个人把生命的核心与把柄交给别人,又多么危险!比如把希望寄托在儿女身上;把幸福寄托在丈夫身上;把生活保障寄托在单位身上……温馨提示:自己才是一只箭,若要它坚韧,若要它锋利,若要它百步穿杨,百发百中,磨砺它,拯救它的都只能是自己。作业题(注:作业题--例题类型对照表,供参考)题1,2—类型1;题3,4—类型5;题5,6—类型6;1、(★★)如右图所示,已知三角形ABC面积为1,延长AB至D,使BD=AB;延长BC至E,使CE=2BC;延长CA至F,使AF=3AC,求三角形DEF的面积。2、(★★)右图是一块长方形耕地,它由四个小长方形拼合而成,其中三个小长方形的面积分别为15、18、30公顷,问图中阴影部分的面积是多少?3、正方形ABFD的面积为100平方厘米,直角三角形ABC的面积,比直角三角形(CDE的面积大30平方厘米,求DE的长是多少? 4、(★★★)如下图,已知D是BC的中点,E是CD的中点,F是AC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论