黑龙江省哈尔滨市五常市达标名校2024届毕业升学考试模拟卷数学卷含解析_第1页
黑龙江省哈尔滨市五常市达标名校2024届毕业升学考试模拟卷数学卷含解析_第2页
黑龙江省哈尔滨市五常市达标名校2024届毕业升学考试模拟卷数学卷含解析_第3页
黑龙江省哈尔滨市五常市达标名校2024届毕业升学考试模拟卷数学卷含解析_第4页
黑龙江省哈尔滨市五常市达标名校2024届毕业升学考试模拟卷数学卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省哈尔滨市五常市达标名校2024届毕业升学考试模拟卷数学卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.在下面的四个几何体中,左视图与主视图不相同的几何体是()A. B. C. D.2.如图,G,E分别是正方形ABCD的边AB,BC上的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正确的结论有()A.4个 B.3个 C.2个 D.1个3.2022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为()A.12×10 B.1.2×10 C.1.2×10 D.0.12×104.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为()A.2.18×106B.2.18×105C.21.8×106D.21.8×1055.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是()A.216000米 B.0.00216米C.0.000216米 D.0.0000216米6.下列四个命题中,真命题是()A.相等的圆心角所对的两条弦相等B.圆既是中心对称图形也是轴对称图形C.平分弦的直径一定垂直于这条弦D.相切两圆的圆心距等于这两圆的半径之和7.下面的几何图形是由四个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.8.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.969.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A. B. C. D.10.下列计算正确的是()A.a3•a3=a9B.(a+b)2=a2+b2C.a2÷a2=0D.(a2)3=a6二、填空题(共7小题,每小题3分,满分21分)11.若数据2、3、5、3、8的众数是a,则中位数是b,则a﹣b等于_____.12.因式分解:a3-a=______.13.如图,AB是半圆O的直径,点C、D是半圆O的三等分点,若弦CD=2,则图中阴影部分的面积为.14.以矩形ABCD两条对角线的交点O为坐标原点,以平行于两边的方向为坐标轴,建立如图所示的平面直角坐标系,BE⊥AC,垂足为E.若双曲线y=32x15.的相反数是_____.16.如图,sin∠C,长度为2的线段ED在射线CF上滑动,点B在射线CA上,且BC=5,则△BDE周长的最小值为______.17.等腰梯形是__________对称图形.三、解答题(共7小题,满分69分)18.(10分)如图,点D为△ABC边上一点,请用尺规过点D,作△ADE,使点E在AC上,且△ADE与△ABC相似.(保留作图痕迹,不写作法,只作出符合条件的一个即可)19.(5分)如图所示,点B、F、C、E在同一直线上,AB⊥BE,DE⊥BE,连接AC、DF,且AC=DF,BF=CE,求证:AB=DE.20.(8分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.21.(10分)如图,在△AOB中,∠ABO=90°,OB=1,AB=8,反比例函数y=在第一象限内的图象分别交OA,AB于点C和点D,且△BOD的面积S△BOD=1.求反比例函数解析式;求点C的坐标.22.(10分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.23.(12分)如图,已知在中,,是的平分线.(1)作一个使它经过两点,且圆心在边上;(不写作法,保留作图痕迹)(2)判断直线与的位置关系,并说明理由.24.(14分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】

由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【题目详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【题目点拨】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2、C【解题分析】

由∠BEG=45°知∠BEA>45°,结合∠AEF=90°得∠HEC<45°,据此知HC<EC,即可判断①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.【题目详解】解:∵四边形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;故选:C.【题目点拨】本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.3、B【解题分析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】数据12000用科学记数法表示为1.2×104,故选:B.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、A【解题分析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】2180000的小数点向左移动6位得到2.18,所以2180000用科学记数法表示为2.18×106,故选A.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5、B【解题分析】

绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】2.16×10﹣3米=0.00216米.故选B.【题目点拨】考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、B【解题分析】试题解析:A.在同圆或等圆中,相等的圆心角所对的两条弦相等,故A项错误;B.圆既是中心对称图形也是轴对称图形,正确;C.平分弦(不是直径)的直径一定垂直于这条弦,故C选项错误;D.外切两圆的圆心距等于这两圆的半径之和,故选项D错误.故选B.7、C【解题分析】试题分析:观察可得,只有选项C的主视图和左视图相同,都为,故答案选C.考点:简单几何体的三视图.8、C【解题分析】

解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:,∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.9、C【解题分析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C10、D.【解题分析】试题分析:A、原式=a6,不符合题意;B、原式=a2+2ab+b2,不符合题意;C、原式=1,不符合题意;D、原式=a6,符合题意,故选D考点:整式的混合运算二、填空题(共7小题,每小题3分,满分21分)11、2【解题分析】

将数据排序后,位置在最中间的数值。即将数据分成两部分,一部分大于该数值,一部分小于该数值。中位数的位置:当样本数为奇数时,中位数=(N+1)/2;当样本数为偶数时,中位数为N/2与1+N/2的均值;众数是在一组数据中,出现次数最多的数据。根据定义即可算出.【题目详解】2、1、5、1、8中只有1出现两次,其余都是1次,得众数为a=1.2、1、5、1、8重新排列2、1、1、5、8,中间的数是1,中位数b=1.∴a﹣b=1-1=2.故答案为:2.【题目点拨】中位数与众数的定义.12、a(a-1)(a+1)【解题分析】分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3-a,=a(a2-1),=a(a+1)(a-1).13、.【解题分析】试题分析:连结OC、OD,因为C、D是半圆O的三等分点,所以,∠BOD=∠COD=60°,所以,三角形OCD为等边三角形,所以,半圆O的半径为OC=CD=2,S扇形OBDC=,S△OBC==,S弓形CD=S扇形ODC-S△ODC==,所以阴影部分的面积为为S=--()=.考点:扇形的面积计算.14、1【解题分析】

由双曲线y=32x(x>0)经过点D知S△ODF=12k=34,由矩形性质知S△AOB=2S△ODF【题目详解】如图,∵双曲线y=32x∴S△ODF=12k=3则S△AOB=2S△ODF=32,即12OA•BE=∴OA•BE=1,∵四边形ABCD是矩形,∴OA=OB,∴OB•BE=1,故答案为:1.【题目点拨】本题主要考查反比例函数图象上的点的坐标特征,解题的关键是掌握反比例函数系数k的几何意义及矩形的性质.15、【解题分析】

根据只有符号不同的两个数互为相反数,可得答案.【题目详解】的相反数是−.故答案为−.【题目点拨】本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.16、.【解题分析】

作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F,可知四边形为平行四边形及四边形为矩形,在中,解直角三角形可知BH长,易得GK长,在Rt△BGK中,可得BG长,表示出△BD'E'的周长等量代换可得其值.【题目详解】解:如图,作BK∥CF,使得BK=DE=2,作K关于直线CF的对称点G交CF于点M,连接BG交CF于D',则,此时△BD'E'的周长最小,作交CF于点F.由作图知,四边形为平行四边形,由对称可知,即四边形为矩形在中,在Rt△BGK中,BK=2,GK=6,∴BG2,∴△BDE周长的最小值为BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+2.故答案为:2+2.【题目点拨】本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.17、轴【解题分析】

根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线.【题目详解】画图如下:结合图形,根据轴对称的定义及等腰梯形的特征可知,等腰梯形是轴对称图形.故答案为:轴【题目点拨】本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形.三、解答题(共7小题,满分69分)18、见解析【解题分析】

以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AC的交点即为所求作的点.【题目详解】解:如图,点E即为所求作的点.【题目点拨】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.19、证明见解析【解题分析】试题分析:证明三角形△ABC△DEF,可得=.试题解析:证明:∵=,∴BC=EF,∵⊥,⊥,∴∠B=∠E=90°,AC=DF,∴△ABC△DEF,∴AB=DE.20、1.【解题分析】试题分析:根据相似三角形的判定与性质,可得答案.试题解析:∵DE⊥AB,∴∠BED=90°,又∠C=90°,∴∠BED=∠C.又∠B=∠B,∴△BED∽△BCA,∴BDAB=DEAC,∴DE=考点:相似三角形的判定与性质.21、(1)反比例函数解析式为y=;(2)C点坐标为(2,1)【解题分析】

(1)由S△BOD=1可得BD的长,从而可得D的坐标,然后代入反比例函数解析式可求得k,从而得解析式为y=;(2)由已知可确定A点坐标,再由待定系数法求出直线AB的解析式为y=2x,然后解方程组即可得到C点坐标.【题目详解】(1)∵∠ABO=90°,OB=1,S△BOD=1,∴OB×BD=1,解得BD=2,∴D(1,2)将D(1,2)代入y=,得2=,∴k=8,∴反比例函数解析式为y=;(2)∵∠ABO=90°,OB=1,AB=8,∴A点坐标为(1,8),设直线OA的解析式为y=kx,把A(1,8)代入得1k=8,解得k=2,∴直线AB的解析式为y=2x,解方程组得或,∴C点坐标为(2,1).22、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解题分析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.详解:(1)依题意得:,解得:,∴抛物线的解析式为.∵对称轴为,且抛物线经过,∴把、分别代入直线,得,解之得:,∴直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,∴.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,,∴,,,①若点为直角顶点,则,即:解得:,②若点为直角顶点,则,即:解得:,③若点为直角顶点,则,即:解得:,.综上所述的坐标为或或或.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.23、(1)见解析;(2)与相切,理由见解析.【解题分析】

(1)作出A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论