专题23 类比归纳专题:一次函数与三角形综合问题压轴题四种模型全攻略(解析版)2023-2024学年八年级数学上册压轴题攻略苏科版_第1页
专题23 类比归纳专题:一次函数与三角形综合问题压轴题四种模型全攻略(解析版)2023-2024学年八年级数学上册压轴题攻略苏科版_第2页
专题23 类比归纳专题:一次函数与三角形综合问题压轴题四种模型全攻略(解析版)2023-2024学年八年级数学上册压轴题攻略苏科版_第3页
专题23 类比归纳专题:一次函数与三角形综合问题压轴题四种模型全攻略(解析版)2023-2024学年八年级数学上册压轴题攻略苏科版_第4页
专题23 类比归纳专题:一次函数与三角形综合问题压轴题四种模型全攻略(解析版)2023-2024学年八年级数学上册压轴题攻略苏科版_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页专题23类比归纳专题:一次函数与三角形综合问题压轴题四种模型全攻略【考点导航】目录TOC\o"1-3"\h\u【典型例题】 1【类型一一次函数与三角形的面积问题】 1【类型二一次函数与三角形全等问题】 12【类型三一次函数与三角形存在问题】 20【类型四一次函数中折叠问题】 32【典型例题】【类型一一次函数与三角形的面积问题】例题:(2023春·福建福州·八年级福建省福州第一中学校考期中)在平面直角坐标系中,一次函数的图象经过点,.(1)求这个一次函数的解析式;(2)若这个一次函数的图象与x轴的交点为C,求的面积.【答案】(1)(2)【分析】(1)根据点A、B的坐标利用待定系数法即可求出一次函数的解析式;(2)利用直线解析式求得的坐标,然后根据三角形面积公式即可求得的面积.【详解】(1)解:∵一次函数()的图象经过点,.∴,解得:,∴这个一次函数的解析式为:.(2)解:令,则,解得,∴,∵.∴.【点睛】本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征,三角形的面积,熟练掌握利用待定系数法求一次函数解析式的方法是解题的关键.【变式训练】一、填空题1.(2023春·湖南永州·八年级校考期中)直线与两坐标轴围成的三角形面积为【答案】【分析】分别令和,可求出与坐标轴的交点,从而可以求解.【详解】解:当时,;当时,,解得:;直线与坐标轴的交点分别为:,,直线与坐标轴所围成的三角形面积:.故答案是:.【点睛】本题考查了一次函数与坐标轴交点围成面积问题,掌握与坐标轴交点坐标求法是解题的关键.2.(2023春·河北保定·八年级统考期末)如图,求两条直线:与直线:的交点的坐标是,与轴围成的三角形的面积是.【答案】12【分析】联立两直线解析式解方程组即可得到交点坐标;求出两直线与轴交点间的距离,然后利用三角形的面积公式列式计算即可得解.【详解】解:联立得,解得.所以,交点坐标为,令,则,解得,,解得,所以,两直线与轴交点之间的距离为,所以,两条直线和轴所围成的三角形的面积.故答案为:,12.【点睛】本题考查了两直线相交的问题,三角形的面积,第二问先求出两直线与轴的交点间的距离是解题的关键.3.(2023春·河北秦皇岛·八年级统考期末)如图,已知一次函数的图象经过,两点,并且交轴于点,交轴于点.则该一次函数的解析式为;的面积为.

【答案】【分析】(1)先把点和点坐标代入得到关于、的方程组,解方程组得到、的值,从而得到一次函数的解析式;(2)令,即可确定点坐标,根据三角形面积公式和的面积进行计算即可.【详解】(1)解:把,代入,得,解得,∴一次函数解析式为;故答案为:.(2)解:把代入,解得,所以点坐标为,所以的面积.故答案为:.【点睛】本题考查了待定系数法求一次函数解析式:①先设出函数的一般形式,如求一次函数的解析式时,先设;②将自变量的值及与它对应的函数值的值代入所设的解析式,得到关于待定系数的方程或方程组;③解方程或方程组,求出待定系数的值,进而写出函数解析式.二、解答题4.(2023春·陕西西安·七年级统考期末)如图,已知直线的解析式为,直线的解析式为:,与轴交于点,与交于点.

(1)求k,b的值;(2)求三角形的面积.【答案】(1),(2)3【分析】(1)利用待定系数法求出,的值;(2)先根据两个函数解析式计算出、两点坐标,然后再利用三角形的面积公式计算出的面积即可.【详解】(1)与交于点,,,解得,;(2)当时,,解得,,当时,解得,,∴的面积.【点睛】此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.5.(2023春·西藏那曲·八年级统考期末)如图,已知直线的图象经过点,且与轴交于点C.

(1)求,的值;(2)若点,判断点D是否在的图象上;(3)求的面积.【答案】(1)(2)不在(3)2【分析】(1)把代入,得到和值,即可得到结论;(2)把的坐标代入一次函数的解析式判断即可;(3)令,求得的值,即可求得一次函数图象与轴的交点坐标.【详解】(1)解:把代入得,,解得:,;(2)把代入得,,点不在该一次函数图象上.(3)该一次函数为,令,则,解得,该一次函数图象与轴的交点坐标为,;∴【点睛】本题考查待定系数法求一次函数解析式和一次函数图象上点坐标的特征,解题的关键是掌握待定系数法.6.(2023春·湖南衡阳·八年级校考期中)如图,在平面直角坐标系中,已知一次函数的图象与过、的直线交于点P,与x轴、y轴分别相交于点C和点D.

(1)求直线的解析式及点P的坐标;(2)连接,求的面积.【答案】(1),(2)【分析】(1)由点A、B的坐标,利用待定系数法即可求出直线的解析式,再联立直线的解析式成方程组,通过解方程组可求出点P的坐标;(2)过点P作于点M,利用一次函数图象上点的坐标特征可求出点C的坐标,结合点A、B、P的坐标,可得出的值,利用三角形的面积公式结合即可求出的面积;【详解】(1)设直线的解析式为,将、代入,得:,解得:,直线的解析式为,联立直线的解析式成方程组,得:,解得:,点P的坐标为(2)过点P作于点M,如图1所示.

点P的坐标为,.当时,,解得,一次函数的图象与x轴交于点C,点C的坐标为,.点A的坐标为,点B的坐标为,,,,.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、三角形的面积等知识,解题的关键是:(1)由点A、B的坐标,利用待定系数法求出直线的解析式;(2)利用切割法找出.7.(2023春·福建莆田·八年级校考期中)如图,一次函数的图象经过点,与轴交于点,与正比例函数的图象交于点,点的横坐标为1.

(1)求的函数表达式.(2)若点在轴负半轴,且满足,求点的坐标.【答案】(1)(2)【分析】(1)先求得点的坐标,再根据待定系数法即可得到的函数表达式;(2)设,,依据,即可得出,进而得到.【详解】(1)解:当时,,,将,代入,得,解得,直线的解析式是;(2)中,令,则,,设,,,,,,解得,.【点睛】本题考查了一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是利用待定系数法求出、的值.8.(2023秋·河北张家口·八年级统考期末)如图,直线与直线相交于点,与x轴分别交于点A、O.

(1)求a,b的值;(2)若点B在y轴上,且满足,求点B的坐标;(3)垂直于x轴的直线与直线,分别交于点C,D,若线段的长为2,直接写出m的值.【答案】(1),(2)或(3)或【分析】(1)将代入,求出a值,再代入即可求出b值;(2)求出的面积,根据求出,分两种情况即可得到结果;(3)分别求出点C和点D的纵坐标,表述出,根据的长为2列出方程,解之即可.【详解】(1)解:把点代入,得,把点代入,得;(2),,,点B的坐标为或;(3)将代入,得,将代入,得,∴,解得:或.【点睛】本题考查了一次函数的交点问题,三角形的面积,解题的关键是根据所给的面积和线段的条件建立方程.9.(2023春·全国·八年级专题练习)如图,直线与x轴、y轴分别交于B,C两点,其中.(1)求k的值;(2)若点是第一象限内直线上的一个动点,当点A运动过程中,试求的面积S与x的函数关系式,并写出自变量x取值范围;(3)点A是直线上的一个动点,当点A运动到什么位置时,的面积是1.【答案】(1);(2)(3)或【分析】(1)先确定出点B的坐标,代入函数解析式中即可求出k;(2)借助(1)得出的函数关系式,利用三角形的面积公式即可求出函数关系式;(3)分两种情况考虑,利用三角形的面积求出求出点A坐标.【详解】(1)∵,∴,∵点B在直线上,∴,∴;(2)由(1)知,,∴直线BC解析式为,∵点是第一象限内的直线上的一个动点,∴,∴,(3)如图,由(2)知,,∵的面积是1;∴,∴,当点A在x轴下方时,,∴,此时,即;综上,点A的位置为或.【点睛】此题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,等腰三角形的性质,解本题的关键是求出点A的坐标.【类型二一次函数与三角形全等问题】例题:(2023春·全国·八年级专题练习)直线:分别与,轴交于,两点,点的坐标为,,过点的直线交轴正半轴于点,且.(1)求点的坐标及直线的函数表达式;(2)在坐标系平面内,存在点,使以点,,为顶点的三角形与全等,画出,并求出点的坐标.【答案】(1)点的坐标为,,;(2)图见解析,点的坐标为,或,或,.【分析】(1)将点点,代入解析式得出,继而得出点的坐标为,,根据得出,即点的坐标为,,然后待定系数法求解析式即可求解;(2)分在轴上方:和如图和点在轴上如图②两种情况,根据全等三角形的性质即可求解.【详解】(1)解:∵直线:过点,,,.当时,,点的坐标为,,即.::,.点在轴正半轴,点的坐标为,.设直线的解析式为,将,、,代入,得:,解得:,直线的函数表达式为.(2)分在轴上方:和如图和点在轴上如图②两种情况考虑:如图①:①当时,,.,,,,点的坐标为,;②当时,,,,点的坐标为,.如图②当时,,,点的坐标为,.综上所述,点的坐标为,或,或,.【点睛】本题考查了一次函数与几何图形,坐标与图形,全等三角形的性质与判定,数形结合是解题的关键.【变式训练】1.(2023春·北京平谷·八年级统考期末)如图,直线与轴和轴分别交与,两点,射线于点,若点是射线上的一个动点,点是轴上的一个动点,且以为顶点的三角形与全等,则的长为.

【答案】【分析】根据一次函数解析式可求出A点和B点坐标,从而求出的两条直角边,并运用勾股定理求出.根据已知可得,分别从或时,即当时,,或时,,分别求得的值,即可得出结论.【详解】∵直线与x轴和y轴分别交与A、B两点,当时,即,解得:.当时,,∴.∴.∴.∵,点C在射线上,∴,即.∵,∴.若以为顶点的三角形与全等,则或,即或.如图1所示,当时,,

∴;如图2所示,当时,,

∴.综上所述,的长为6或.故答案为:6或.【点睛】本题考查了一次函数的应用、全等三角形的判定和性质以及勾股定理等知识,掌握一次函数的图象与性质是解题的关键.2.(2023春·全国·八年级专题练习)如图,直线与x轴和y轴分别交于A、B两点,把射线AB绕点A顺时针旋转90°得射线AC,点P是射线AC上一个动点,点Q是x轴上一个动点.若与全等,试确定点Q的横坐标.【答案】7或8【分析】根据与全等分两种情况分类讨论即可解答.【详解】解:在直线中,当x=0时,y=0+4=4,即,当y=0时,0=,∴,即;∵与全等,∴分两种情况:当时,,如图所示,则,∴点Q的横坐标为:,当时,,如图所示,则,∵,∴点Q的横坐标为:;综上所述:点Q的横坐标为7或8.【点睛】本题主要考查三角形全等的应用,一次函数的应用,勾股定理,掌握相关知识并灵活应用是解题的关键.3.(2022·辽宁丹东·八年级期末)已知一次函数y=-3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.求点E的坐标;(2)△AOB与△FOD是否全等,请说明理由;(3)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.【答案】(1)E(,)(2)△AOB≌△FOD,理由见详解;(3)P(0,-3)或(4,1)或(,).【分析】(1)连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,首先求出点A,点B,点C,点D的坐标,然后根据点E到两坐标轴的距离相等,得到OE平分∠BOC,进而求出点E的坐标即可;(2)首先求出直线DE的解析式,得到点F的坐标,即可证明△AOB≌△FOD;(3)首先求出直线GC的解析式,求出AB的长,设P(m,m-3),分类讨论①当AB=AP时,②当AB=BP时,③当AP=BP时,分别求出m的值即可解答.(1)解:连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,当y=0时,-3x+3=0,解得x=1,∴A(1,0),当x=0时,y=3,∴OB=3,B(0,3),∵点D与点C关于y轴对称,C(3,0),OC=3,∴D(-3,0),∵点E到两坐标轴的距离相等,∴EG=EH,∵EH⊥OC,EG⊥OC,∴OE平分∠BOC,∵OB=OC=3,∴CE=BE,∴E为BC的中点,∴E(,);(2)解:△AOB≌△FOD,设直线DE表达式为y=kx+b,则,解得:,∴y=x+1,∵F是直线DE与y轴的交点,∴F(0,1),

∴OF=OA=1,∵OB=OD=3,∠AOB=∠FOD=90°,∴△AOB≌△FOD;(3)解:∵点G与点B关于x轴对称,B(0,3),∴点G(0,-3),∵C(3,0),设直线GC的解析式为:y=ax+c,,解得:,∴y=x-3,AB==

,设P(m,m-3),①当AB=AP时,=整理得:m2-4m=0,

解得:m1=0,m2=4,∴P(0,-3)或(4,1),②当AB=BP时,=m2-6m+13=0,△<0故不存在,③当AP=BP时,=,解得:m=,∴P(,),综上所述P(0,-3)或(4,1)或(,),【点睛】此题主要考查待定系数法求一次函数,一次函数与坐标轴的交点,全等三角形的判定,勾股定理.【类型三一次函数与三角形存在问题】例题:(2023春·吉林长春·八年级统考期末)如图,直线的函数表达式为,且与x轴交于点D,直线经过点A,B,直线,交于点C.

(1)求直线的函数表达式;(2)求的面积;(3)在直线上是否存在点P,使得面积是面积的1.5倍?如果存在,请直接写出P点坐标;如果不存在,请说明理由.【答案】(1)(2)(3)存在,点或【分析】(1)根据点A、B的坐标利用待定系数法即可求出直线的函数解析式;(2)令y=-2x+4=0求出x值,即可得出点D的坐标,联立两直线解析式成方程组,解方程组即可得出点C的坐标,再根据三角形的面积公式即可得出结论;(3)假设存在点P,使得面积是面积的1.5倍,根据两三角形面积间的关系得到,再利用待定系数法求出点P的坐标.【详解】(1)设直线的函数解析式为,将、代入得:,解得:,∴直线的函数解析式为.(2)联立解得∴点C的坐标为.当时,,∴点D的坐标为.∴.(3)假设存在点P,使得面积是面积的1.5倍.∵面积是面积的1.5倍,∴,∴或3,当时,,此时点P的坐标为;当时,综上可知,在直线上存在点或,使得面积是面积的1.5倍.【点睛】本题考查了待定系数法求函数解析式,两条直线的交点问题,一次函数图象上点的坐标特征,根据给定点的坐标利用待定系数法求出函数解析式是解题的关键.【变式训练】1.(2023秋·广东梅州·八年级丰顺县丰顺中学校考期末)如图,在平面直角坐标系中,直线AB:与轴交于点C,且点,.(1)点C的坐标为(2)求原点O到直线的距离;(3)在x轴上是否存在一点P,使得是直角三角形?若存在,求出点P的坐标.【答案】(1);(2);(3)存在,点的坐标为或【分析】(1)令,即可求解;(2)首先可求得点A、B的坐标,根据两点间距离公式可求得的长,再根据,设原点到直线的距离为,列方程即可求解;(3)设点的坐标为,根据题意可知不为直角,分两种情况,利用勾股定理即可求解.【详解】(1)解:令,则,解得:,所以点的坐标为;(2)解:代入A、两点可得:,,解得:,,故,,,,设原点到直线的距离为,则,解得:,故原点到直线的距离为;(3)解:存在,设点的坐标为,根据题意可知不为直角,所以当是直角三角形分两种情况:①当时,此时点的坐标为;②当,,故,解得:,此时点的坐标为;综上所述,满足条件的点的坐标为或.【点睛】本题考查了两点间距离公式,坐标与图形,求不规则图形的面积,直角三角形的判定,解答的关键是采用分类讨论的思想.2.(2023秋·辽宁沈阳·八年级校考期末)如图,在平面直角坐标系中,直线与x轴和y轴分别交于点B和点C,与直线相交于点,动点M在线段和射线上运动.(1)求点B和点C的坐标.(2)求的面积.(3)是否存在点M,使的面积是面积的?若存在,求出此时点M的坐标;若不存在,请说明理由.【答案】(1)B的坐标为,点C的坐标为(2)12(3)存在,点M的坐标是或或【分析】(1)在中,令,则;令,则,从而可得答案;(2)直接利用三角形的面积公式进行计算即可;(3)设点M的坐标为,求解直线的表达式是,由,可得,当点M在线段上时,如图①,则,此时,当点M在射线上时,如图②,时,,则点的坐标是;时,,则点的坐标是.从而可得答案.【详解】(1)解:在中,令,则;令,则.故点B的坐标为,点C的坐标为.(2)∵,,∴.(3)存在点M使.

理由如下:设点M的坐标为,直线的表达式是.∵,∴,解得.∴直线的表达式是.∵,∴.∴.当点M在线段上时,如图①,则,此时,∴点M的坐标是.当点M在射线上时,如图②,时,,则点的坐标是;时,,则点的坐标是.综上所述,点M的坐标是或或.【点睛】本题考查的是利用待定系数法求解一次函数的解析式,求解一次函数与坐标轴的交点坐标,坐标与图形,熟练的利用数形结合的方法解题是关键.3.(2023·河北沧州·校考一模)如图,直线l1的表达式为.且与x轴交于点A,与y轴交于点B,直线l2经过点,且与直线l1交于点.(1)写出点D的坐标,并求出直线l2的表达式;(2)连接,求的面积;(3)直线上是否存在一点P,使得的周长最小?若不存在,请说明理由;若存在,求出点P的坐标.【答案】(1);(2)4(3)存在,,理由见解析【分析】(1)把点代入即可求得点D的坐标,然后根据待定系数法即可求得直线的解析式;(2)由求得A、B的坐标,从而求得的长,然后根据三角形面积公式求得即可;(3)作点A关于直线l2的对称点,连接交直线l2于P,连接,此时的值最小,即的周长最小,求出的坐标,然后求得直线的解析式,最后与直线的解析式联立,解方程即可解决问题.【详解】(1)解:∵直线经过点,∴,解得,∴,设直线的解析式为,∵直线经过点,,∴,解得,∴直线的解析式为;(2)由直线l1的表达式为可知,,∴,∴;(3)存在,理由如下:作点A关于直线的对称点,连接交直线l2于P,连接,此时的值最小,即的周长最小,由直线l2为可知,,由轴对称的性质可知,∴,∵,,∴设此时的解析式为,则有,解得,∴直线的解析式为,解得,∴.【点睛】本题考查了一次函数的性质、待定系数法求一次函数的解析式以及轴对称最短问题等,解题的关键是熟练掌握待定系数法、学会根据轴对称解决最短问题,属于中考常考题型.4.(2023春·山东聊城·八年级校联考期末)如图,直线的函数解析式为,且与x轴交于点D,直线经过点A,B,直线、交于点C.

(1)求直线的函数解析式;(2)求的面积;(3)在直线上是否存在点P,使得面积是面积的3倍?如果存在,请求出P坐标;如果不存在,请说明理由.【答案】(1)(2)3(3)存在,点的坐标为或【分析】(1)根据点、的坐标利用待定系数法即可求出直线的函数解析式;(2)令求出值,即可得出点的坐标,联立两直线解析式成方程组,解方程组即可得出点的坐标,再根据三角形的面积公式即可得出结论;(3)假设存在点,使得面积是面积的3倍,根据两三角形面积间的关系得到,再利用待定系数法求出点的坐标.【详解】(1)设直线的函数解析式为,将、代入得:,解得:,直线的函数解析式为.(2)联立两直线解析式成方程组得:,解得:,点的坐标为.当时,,点的坐标为..(3)假设存在点,使得面积是面积的3倍.面积是面积的3倍,,当时,,此时点的坐标为;当时,,此时点的坐标为.综上所述:在直线上存在点或,使得面积是面积的3倍.【点睛】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及待定系数法求一次函数解析式,根据给定点的坐标利用待定系数法求出函数解析式是解题的关键.5.(2023秋·山东济南·八年级统考期末)如图,在平面直角坐标系中,直线:与x轴交于点,与y轴交于点,与直线交于点E.已知点D的坐标为,点C在A的左侧且.(1)分别求出直线和直线的表达式;(2)在直线上,是否存在一点P,使得,若存在,请求出点P的坐标;若不存在,请说明理由;(3)在坐标轴上,是否存在一点Q,使得是以为直角边的直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由.【答案】(1),(2)存在,若点P在右侧,;若点P在左侧,(3)存在,或【分析】(1)用待定系数法求解即可;(2)先求出交点和,再分两种情况:①若点P在右侧,②若点P在左侧,利用三角形面积,分别求解即可;(3)分两种情况:①当时,交x轴于Q,②当时,交x轴于Q,分别求解即可.【详解】(1)解:将,代入直线:,得:,解得:,∴直线:,∵,,∴,设直线:()将,代入直线:,得:,解得:,∴直线:.(2)解:联立,解得:,∴,∴,①若点P在右侧,∵,∴,∴,解得,∴②若点P在左侧,∵S△BEP=8,∴,∴,解得,当时,,∴.(3)解:分两种情况:①当时,交x轴于Q,∵,,∴,∵,∴,∵,∴,∵,∴,∴,∴,∴;②当时,交x轴于Q,同理,∴,∵,,∴,由勾股定理,得,∴,∴,综上,存在,或.【点睛】本题考查待定系数法求一次函数解析式,从标与图形,三解形面积,勾股定理,等腰直角三角形,注意分类讨论思想的应用是解题的关键.【类型四一次函数中折叠问题】例题:(2023秋·山东济南·八年级统考期末)如图1,在同一平面直角坐标系中,直线:与直线:相交于点.与轴交于点,直线与轴交于点(1)填空:______,______,______;(2)如图2.点为线段上一动点,将沿直线翻折得到,线段交轴于点.①求线段的长度;②当点落在轴上时,求点的坐标;③若为直角三角形,请直接写出满足条件的点的坐标.【答案】(1)(2)①;②点的坐标为;③点的坐标为或【分析】(1)把代入,求出,得直线:,再把代入,求出,得点的坐标,然后把代入,求出;(2)①根据折叠的性质得出,勾股定理即可求解;②过点作轴于点,作轴于点,求出,即可得出,②求出,可得,即可得答案;③分两种情况讨论,当时,求出,得,得,得点坐标;当时,设,则,由勾股定理得:,求出,得点坐标.【详解】(1)解:把代入,,,直线:,把代入,,把代入,,,;故答案为:.(2)①∵直线:令,解得,∴点的坐标为,∵∴,∵折叠,∴;②如下图,过点作轴于点,作轴于点,则,,,,,点的坐标为;③如下图,当时,由翻折得,,,,,点的坐标为;如图,当时,设,则,在中由勾股定理得:,解得:,点的坐标为,综上,点的坐标为或.【点睛】此题考查了一次函数,勾股定理,直角三角形的性质和判定,翻折的性质,解题的关键是作辅助线.【变式训练】1.(2023春·八年级课时练习)如图,直线与轴、轴分别交于点和点,点是线段上的一点,若将沿折叠,点恰好落在轴上的处,若是轴负半轴上一动点,且是等腰三角形,则的坐标为______.【答案】或或【分析】利用一次函数图象上点的坐标特征可求出点,的坐标,利用勾股定理可求出的长度,进而可得出的长度,设,则在中,利用勾股定理即可得出关于的方程,解之即可得出的值,进而可得出点的坐标,进一步求得,然后分三种情况讨论求得点的坐标即可.【详解】当时,,点的坐标为;当时,,解得:,点的坐标为..由折叠的性质可得,.设,则.在中,由勾股定理得:,即,解得:,点的坐标

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论