2024届黔南市重点中学中考数学全真模拟试卷含解析_第1页
2024届黔南市重点中学中考数学全真模拟试卷含解析_第2页
2024届黔南市重点中学中考数学全真模拟试卷含解析_第3页
2024届黔南市重点中学中考数学全真模拟试卷含解析_第4页
2024届黔南市重点中学中考数学全真模拟试卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黔南市重点中学中考数学全真模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是()A.线段EF的长逐渐增长 B.线段EF的长逐渐减小C.线段EF的长始终不变 D.线段EF的长与点P的位置有关2.在△ABC中,点D、E分别在边AB、AC上,如果AD=1,BD=3,那么由下列条件能够判断DE∥BC的是()A. B. C. D.3.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为()A.10cm B.20cm C.10πcm D.20πcm4.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为()A.0.96×107 B.9.6×106 C.96×105 D.9.6×1025.如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A. B. C. D.6.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130° B.120° C.110° D.100°7.如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB=2,AE=,则点G到BE的距离是()A. B. C. D.8.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①② B.②④ C.②③ D.③④9.计算(—2)2-3的值是()A、1B、2C、—1D、—210.如图,已知函数与的图象在第二象限交于点,点在的图象上,且点B在以O点为圆心,OA为半径的上,则k的值为A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.已知关于x的方程x2-23x-k=0有两个相等的实数根,则k的值为__________.12.如图,一个直角三角形纸片,剪去直角后,得到一个四边形,则∠1+∠2=_______度.13.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=__.14.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.15.方程=1的解是___.16.函数y=+中,自变量x的取值范围是_____.三、解答题(共8题,共72分)17.(8分)观察下列算式:①1×3-22="3"-4=-1②2×4-32="8"-9=-1③3×5-42="15"-16=-1④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.18.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.19.(8分)(1)计算:|﹣3|+(π﹣2018)0﹣2sin30°+()﹣1.(2)先化简,再求值:(x﹣1)÷(﹣1),其中x为方程x2+3x+2=0的根.20.(8分)某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:销售时段销售数量销售收入A种型号B种型号第一周3台5台1800元第二周4台10台3100元(进价、售价均保持不变,利润=销售收入-进货成本)求A,B两种型号的电风扇的销售单价.若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.21.(8分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)22.(10分)在平面直角坐标系中,△ABC的顶点坐标是A(﹣2,3),B(﹣4,﹣1),C(2,0).点P(m,n)为△ABC内一点,平移△ABC得到△A1B1C1,使点P(m,n)移到P(m+6,n+1)处.(1)画出△A1B1C1(2)将△ABC绕坐标点C逆时针旋转90°得到△A2B2C,画出△A2B2C;(3)在(2)的条件下求BC扫过的面积.23.(12分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE的延长线于点F.求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD的面积.24.如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M称为碟顶.由定义知,取AB中点N,连结MN,MN与AB的关系是_____.抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x轴上,且AB=1.①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.

参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解题分析】试题分析:连接AR,根据勾股定理得出AR=的长不变,根据三角形的中位线定理得出EF=AR,即可得出线段EF的长始终不变,故选C.考点:1、矩形性质,2、勾股定理,3、三角形的中位线2、D【解题分析】

如图,∵AD=1,BD=3,∴,当时,,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴∠ADE=∠B,∴DE∥BC,而根据选项A、B、C的条件都不能推出DE∥BC,故选D.3、A【解题分析】试题解析:扇形的弧长为:=20πcm,∴圆锥底面半径为20π÷2π=10cm,故选A.考点:圆锥的计算.4、B【解题分析】试题分析:“960万”用科学记数法表示为9.6×106,故选B.考点:科学记数法—表示较大的数.5、B【解题分析】

连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF=,再证明∠BFC=90°,最后利用勾股定理求得CF=.【题目详解】连接BF,由折叠可知AE垂直平分BF,∵BC=6,点E为BC的中点,∴BE=3,又∵AB=4,∴AE==5,∵,∴,∴BH=,则BF=,∵FE=BE=EC,∴∠BFC=90°,∴CF==.故选B.【题目点拨】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.6、D【解题分析】分析:先根据圆内接四边形的性质得到然后根据圆周角定理求详解:∵∴∴故选D.点睛:考查圆内接四边形的性质,圆周角定理,掌握圆内接四边形的对角互补是解题的关键.7、A【解题分析】

根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得△BEG与△AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离.【题目详解】连接GB、GE,由已知可知∠BAE=45°.又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.∵AE=4,AB与GE间的距离相等,∴GE=8,S△BEG=S△AEG=SAEFG=1.过点B作BH⊥AE于点H,∵AB=2,∴BH=AH=.∴HE=3.∴BE=2.设点G到BE的距离为h.∴S△BEG=•BE•h=×2×h=1.∴h=.即点G到BE的距离为.故选A.【题目点拨】本题主要考查了几何变换综合题.涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强.解题的关键是运用等积式及四点共圆的判定及性质求解.8、D【解题分析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选D.考点:由实际问题抽象出一元一次方程.9、A【解题分析】本题考查的是有理数的混合运算根据有理数的加法、乘方法则,先算乘方,再算加法,即得结果。解答本题的关键是掌握好有理数的加法、乘方法则。10、A【解题分析】

由题意,因为与反比例函数都是关于直线对称,推出A与B关于直线对称,推出,可得,求出m即可解决问题;【题目详解】函数与的图象在第二象限交于点,点与反比例函数都是关于直线对称,与B关于直线对称,,,点故选:A.【题目点拨】本题考查反比例函数与一次函数的交点问题,反比例函数的图像与性质,圆的对称性及轴对称的性质.解题的关键是灵活运用所学知识解决问题,本题的突破点是发现A,B关于直线对称.二、填空题(本大题共6个小题,每小题3分,共18分)11、-3【解题分析】试题解析:根据题意得:△=(23)2-4×1×(-k)=0,即12+4k=0,

解得:k=-3,12、270【解题分析】

根据三角形的内角和与平角定义可求解.【题目详解】解析:如图,根据题意可知∠5=90°,∴∠3+∠4=90°,∴∠1+∠2=180°+180°-(∠3+∠4)=360°-90°=270°,故答案为:270度.【题目点拨】本题主要考查了三角形的内角和定理和内角与外角之间的关系.要会熟练运用内角和定理求角的度数.13、5:1【解题分析】

根据题意作出合适的辅助线,然后根据三角形相似即可解答本题.【题目详解】解:作AE∥BC交DC于点E,交DF于点F,设每个小正方形的边长为a,则△DEF∽△DCN,∴==,∴EF=a,∵AF=2a,∴AE=a,∵△AME∽△BMC,∴===,故答案为:5:1.【题目点拨】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.14、30【解题分析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.考点:折叠图形的性质15、x=﹣4【解题分析】

分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【题目详解】去分母得:3+2x=x﹣1,解得:x=﹣4,经检验x=﹣4是分式方程的解.【题目点拨】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.16、x≥﹣2且x≠1【解题分析】分析:根据使分式和二次根式有意义的要求列出关于x的不等式组,解不等式组即可求得x的取值范围.详解:∵有意义,∴,解得:且.故答案为:且.点睛:本题解题的关键是需注意:要使函数有意义,的取值需同时满足两个条件:和,二者缺一不可.三、解答题(共8题,共72分)17、⑴4×6-5⑵答案不唯一.如n(n+2)-(n+1)⑶n(n+2)-(n+1)2==-1.【解题分析】(1)根据①②③的算式中,变与不变的部分,找出规律,写出新的算式;(2)将(1)中,发现的规律,由特殊到一般,得出结论;(3)一定成立.利用整式的混合运算方法加以证明.18、详见解析.【解题分析】试题分析:利用SSS证明△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,再由平行线的判定即可得AB∥DE.试题解析:证明:由BE=CF可得BC=EF,又AB=DE,AC=DF,故△ABC≌△DEF(SSS),则∠B=∠DEF,∴AB∥DE.考点:全等三角形的判定与性质.19、(1)6;(2)﹣(x+1),1.【解题分析】

(1)原式=3+1﹣2×+3=6(2)由题意可知:x2+3x+2=0,解得:x=﹣1或x=﹣2原式=(x﹣1)÷=﹣(x+1)当x=﹣1时,x+1=0,分式无意义,当x=﹣2时,原式=120、(1)A,B两种型号电风扇的销售单价分别为250元/台、210元/台;(2)A种型号的电风扇最多能采购10台;(3)在(2)的条件下超市不能实现利润为1400元的目标.【解题分析】

(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号5台B型号的电扇收入1800元,4台A型号10台B型号的电扇收入3100元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(30-a)台,根据金额不多余5400元,列不等式求解;(3)设利润为1400元,列方程求出a的值为20,不符合(2)的条件,可知不能实现目标.【题目详解】(1)设A,B两种型号电风扇的销售单价分别为x元/台、y元/台.依题意,得解得答:A,B两种型号电风扇的销售单价分别为250元/台、210元/台.(2)设采购A种型号的电风扇a台,则采购B种型号的电风扇(30-a)台.依题意,得200a+170(30-a)≤5400,解得a≤10.答:A种型号的电风扇最多能采购10台.(3)依题意,有(250-200)a+(210-170)(30-a)=1400,解得a=20.∵a≤10,∴在(2)的条件下超市不能实现利润为1400元的目标.【题目点拨】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.21、塔CD的高度为37.9米【解题分析】试题分析:首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC.试题解析:作BE⊥CD于E.可得Rt△BED和矩形ACEB.则有CE=AB=16,AC=BE.在Rt△BED中,∠DBE=45°,DE=BE=AC.在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.∵16+DE=DC,∴16+AC=AC,解得:AC=8+8=DE.所以塔CD的高度为(8+24)米≈37.9米,答:塔CD的高度为37.9米.22、(1)见解析;(2)见解析;(3).【解题分析】

(1)根据P(m,n)移到P(m+6,n+1)可知△ABC向右平移6个单位,向上平移了一个单位,由图形平移的性质即可得出点A1,B1,C1的坐标,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形即可;(3)先求出BC长,再利用扇形面积公式,列式计算即可得解.【题目详解】解:(1)平移△ABC得到△A1B1C1,点P(m,n)移到P(m+6,n+1)处,∴△ABC向右平移6个单位,向上平移了一个单位,∴A1(4,4),B1(2,0),C1(8,1);顺次连接A1,B1,C1三点得到所求的△A1B1C1(2)如图所示:△A2B2C即为所求三角形.(3)BC的长为:BC扫过的面积【题目点拨】本题考查了利用旋转变换作图,利用平移变换作图,比较简单,熟练掌握网格结构,准确找出对应点的位置是解题的关键.23、(1)证明详见解析;(2)证明详见解析;(3)1.【解题分析】

(1)利用平行线的性质及中点的定义,可利用AAS证得结论;

(2)由(1)可得AF=BD,结合条件可求得AF=DC,则可证明四边形ADCF为平行四边形,再利用直角三角形的性质可证得AD=CD,可证得四边形ADCF为菱形;

(3)连接DF,可证得四边形ABDF为平行四边形,则可求得DF的长,利用菱形的面积公式可求得答案.【题目详解】(1)证明:∵AF∥BC,

∴∠AFE=∠DBE,

∵E是AD的中点,

∴AE=DE,

在△AFE和△DBE中,

∴△AFE≌△DBE(AAS);

(2)证明:由(1)知,△AFE≌△DBE,则AF=DB.

∵AD为BC边上的中线

∴DB=DC,

∴AF=CD.

∵AF∥BC,

∴四边形ADCF是平行四边形,

∵∠BAC=90°,D是BC的中点,E是AD的中点,

∴AD=DC=BC,

∴四边形ADCF是菱形;

(3)连接DF,

∵AF∥BD,AF=BD,

∴四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论