




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FAILURETOCHARGE
ACriticalLookatCanada’sEVPolicy
ExecutiveSummary
Canada’sgovernmenthasestablishedpoliciesdesignedtopush
automakerstoachievethegovernment’sgoalofhaving35percent
ofallnewmedium-andheavy-dutyvehiclesalesbeelectricby2030,
risingto100percentofallnewmedium-andheavy-dutyvehicle
salesbeingelectricby2040.
RockwoodLithiumMineinSilverCity,Nevada,USA
2
KennethP.Green
by2030,alongwith60newnickelmines,and17newcobaltmines.The
materialsneededforcathodeproductionwillrequire50morenew
mines,andanodematerialsanother40.Thebatterycellswillrequire
90newmines,andEVsthemselvesanother81.Intotal,thisaddsupto
388newmines.Forcontext,asof2021,therewereonly270metalmines
operatingacrosstheUS,andonly70inCanada.IfCanadaandtheUS
wishtohaveinternalsupplychainsforthesevitalEVmetals,theyhave
alotofminestoestablishinaveryshortperiod.
Historically,however,miningandrefin-
ingfacilitiesarebothslowtodevelop
“
Miningandrefiningfacilities
arebothslowtodevelopand
arehighlyuncertainendeavors
plaguedbyregulatoryuncer-
taintyandbyenvironmental
andregulatorybarriers.”
andarehighlyuncertainendeavors
plaguedbyregulatoryuncertainty
andbyenvironmentalandregulatory
barriers.Lithiumproductiontime-
lines,forexample,areapproximately
6to9years,whileproductiontime-
lines(fromapplicationtoproduction)
fornickelareapproximately13to18
years,accordingtotheIEA.
Theestablishmentofaggressiveandshort-termEVadoptiongoals
setsupapotentialconflictwithmetalandmineralproduction,which
ishistoricallycharacterizedbylonglead-timesandlongproduction
timelines.Theriskthatmineralandminingproductionwillfallshortof
projecteddemandissignificant,andcouldgreatlyaffectthesuccessof
variousgovernments’plansforEVtransition.
POLICYBACKGROUND
Concernedabouttheprospectsofsevereman-madeclimatechange,
governmentsaroundtheworldhaveinstitutedprogramstophaseout
theuseoffossilfuel-powered,internalcombustion-driventranspor-
tationsystems—beginningprimarilywithcarsandlighttrucks—and
replacethemwithBattery-ElectricVehicles(BEV);orvehiclesmostly
poweredbyelectricitybutwhichalsofeatureinternalcombustion
backuppower,calledPlug-inHybridElectricVehicles(PHEVs).
InDecember2022,theCanadiangovernmentintroducedregulations
thatwouldleadtothephasingoutofsalesofnewfossil-fuelpowered,
internalcombustionvehicles,tobereplacedbysalesofvehiclesdesig-
natedas“ZeroEmissionVehicles,”orZEVinlegislation.Canada’sAction
1
Planwill“setannuallyincreasingrequirementstowardsachieving100
percentnewlight-dutyzero-emissionvehiclesalesby2035,including
mandatoryinterimtargetsofatleast20percentofallnewlight-duty
vehiclesofferedforsaleby2026andatleast60percentby2030”
(Canada,2022).
Further,toreduceemissionsfrommedium-andheavy-dutyvehicles:
TheGovernmentofCanadawillaimtoreach35percentoftotal
newmedium-andheavy-dutyvehiclesalesbeingzero-emis-
sionvehiclesby2030.Inaddition,theGovernmentwilldevelop
amedium-andheavy-dutyzero-emissionvehicleregulationto
require100percentofnewmedium-andheavy-dutyvehiclesales
tobezero-emissionvehiclesby2040forasubsetofvehicletypes
basedonfeasibility,withinterim2030regulatedsalesrequire-
mentsthatwouldvaryfordifferentvehiclecategoriesbasedon
feasibility,andexploreinterimtargetsforthemid-2020s.(Govern-
mentofCanada,2022)
Accordingtothecost-benefitanalysispublishedintheCanadaGazette
describingCanada’snewZEVtransitionplan:
1
ThiscategorizationschemeincludesBEVsonly,notPHEVs.
3
4
KennethP.Green
From2026to2050,theproposedAmendmentsareestimatedto
haveincrementalZEVvehicleandhomechargercostsof$24.5bil-
lion,whilesaving$33.9billioninnetenergycosts.Theseimpacts
accruetothosewhoswitchtoZEVsinresponsetotheproposed
Amendments.ThecumulativeGHGemissionreductionsareesti-
matedtobe430megatons(Mt),valuedat$19.2billioninavoided
globaldamages.TheproposedAmendmentsarethusestimatedto
havenetbenefitsof$28.6billionandwouldhelpCanadameetits
GHGemissionsreductiontargetsof40percentbelow2005levels
by2030andnet-zeroemissionsby2050.(CanadaGazette,2022)
AsCanadaandtheUnitedStatesshareanintegratedautomobilemar-
ket,itisalsoworthnotingthattheUShasplansforatransitionto
electricvehicles,thoughthestrategiesof
thetwocountriesdifferconsiderably.US
andCanadianplansforvehicleelectrifica-
tionaredifferentinformsandfunctions,
timelines,andtargets.Thefirstdistinction
isthattheUSincludesplug-inhybridelec-
tricvehiclesintoits“ZEV”category,along
withfuelcellelectricvehicles,whichare
currentlynichevehiclessoldprimarilyin
California,ratherthanmainstreampro-
ductionvehicles(Voelcker,2022).
IntheUnitedStates,theBidenAdministrationpublishedExecutive
Order14037in2021whichcontainedthestatedgoal“that50percent
ofallnewpassengercarsandlighttruckssoldin2030bezero-emission
vehicles,includingbatteryelectric,plug-inhybridelectric,orfuelcell
electricvehicles”(UnitedStatesFederalRegister,2021).Theinclusion
ofplug-inhybridvehicles(generallynotconsideredtobezero-emis-
sionvehicles)isasignificantdistinctionbetweentheUSandCanadian
electricvehicleplans.
PresidentBidenalsoissuedanotherexecutiveorderin2021thatwould
requirethefederalgovernmenttostopacquiringgasoline-powered
carsinitsownvehiclefleets.ExecutiveOrder14057requires“100
CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?
5
percentzero-emissionvehicleacquisitionsby2035,including100
percentzero-emissionlight-dutyvehicleacquisitionsby2027”(United
StatesFederalRegister,2021b).
Internationally,vehicleelectrificationgoalsaredifferentstill.TheInter-
nationalEnergyAgency(IEA)initsGlobalEVOutlook2021characterizes
thecollectiveEVtargetof“allexistingpolicies,policyambitionsand
targetsthathavebeenlegislatedfororannouncedbygovernments
aroundtheworld.ItincludescurrentEV-relatedpoliciesandregula-
tions,aswellastheexpectedeffectsofannounceddeploymentsand
plansfromindustrystakeholders.STEPS[the“StatedPolicyScenario”
oftheIEA]aimstoholdupamirrortotheplansofpolicymakersand
illustratetheirconsequences”(IEA2021a:73).
Inthisscenario,theIEAfindsthat“thecollectivetargetoftheEV30@30
signatories[acoalitionofcitygovernmentsandEVindustrygroups]to
achieve30percentsalessharein2030forlight-dutyvehicles,buses
andtrucksissurpassedatthegloballevel(reachingalmost35%),which
reflectsincreasingambitionsforwidespreadEVdeployment”(IEA
2021a:73).
Itisself-evidentthatincreasingproductionofelectricvehicleswill
requireacorrespondingincreaseintheconstituentmaterialsfrom
whichtheyaremanufactured.Inthecaseofelectricvehiclespowered
bylargebatteries,onemustassumethatincreasingtheproductionof
electricvehicleswillrequireamassiveincreaseintheproductionof
metalsusedinbatteryandEVmanufacturing,suchaslithium,nickel,
cobalt,copper,manganese,graphite,andotherelementssometimes
designatedasrareearthelements(REEs),orenergycriticalelements.
Canadahasbeguntorampupitsproductionrefiningcapacityforlith-
iumandotherrareearthelementsrequiredfortheelectricvehicletran-
sition.Forexample,theCanadiangovernmentrecentlyshowcasedlith-
iumproductioninCanada.InJamesBay,Quebec,thegovernmenthas
approvedtheJamesBayLithiumMineProject,aproposaltomine5,800
tonnesoflithium-bearingoreperdayintheEastmanCreecommunity
(D’Andrea,2023).InSaskatchewan,thegovernmenthasapprovedaplan
6
KennethP.Green
toproduceandrefinelithiumataplantinthesouthernpartofthe
province.Accordingtothegovernment,“Stageoneoftheprojectwill
produce[fromSaskatchewanoilfieldbrines]1to1.75kilograms(kg)of
lithiumhydroxideperday.Stagetwowillincludetheconstructionof
oneofCanada’sfirstlithiumextractionandrefiningfacilities,which
willproduceapproximatelyonetonneoflithiumhydroxideperday,
resultingin365tonnesperyear.Thiswillserveasademonstrationplant
priortofullcommercialization”(Saskatchewan,2020).
RareearthelementsproductionisalsounderwayintheNWTwiththe
processingandrefiningoftworareearthelementscriticaltothepro-
ductionofpowerfulmagnetsusedinelectricvehiclemotorstotake
placeinSaskatchewan(FrewandPonticelli,2023).TheNechalacho
mine“hostsaworld-classresource”ofrareearthores,relativelyrich
inneodymiumandpraseodymium,metalsusedintheproduction
ofhigh-strengthmagnetsusedinelectricmotorsandbatteryalloys
(VitalMetals,2020).Mostrecently(asoftimeofwriting),theCanadian
governmentannouncedthatitwillpayCAN$13billioninsubsidiesto
VolkswagentoestablishabatterymanufacturingfacilityinOntario
(Scherer,2023).ThispledgewasmatchedwithaCAN$15billionsub-
sidytoStellantisforasecondbatterymanufacturingfacilityinOntario
(Shakil,2023).
TheInternationalEnergyAgencywouldliketoseeCanadamovestill
morequicklyinitsdevelopmentofrareearthminingandrefining
capacity.AtaCanadiangovernment-organizedpaneldiscussioninFeb-
ruary2023,FatihBirol,theheadoftheIEA,“warnedthattheenergy
shortagescurrentlygrippingEuropecouldberepeatedastheworld
transitionstocleanerfuels,ifWesterncountriesdonotincreasethe
availabilityofrareearthmineralsanddevelopfriendliersourcesof
them.”Further,accordingtoanarticleintheGlobeandMailcovering
theevent,Mr.BirolsaidhewouldliketoseecountrieslikeCanadamore
involvedontheinternationalstagebecause“thereisruleoflaw,there
istransparency,andthereisalsoaccountabilityofthegovernment…
Thesoonerthathappens,thebetter,hesaid”(WalshandGraney,2023).
WHATDOGLOBALVEHICLEELECTRIFICATIONGOALS
LOOKLIKE,NUMERICALLY?
Figure1,fromTheRoleofCriticalMineralsinCleanEnergyTransition,
showsexpectedEVmarketpenetrationto2030underIEA’sSustainable
DevelopmentScenario,orSDS.TheSDSreflectswhattheIEAbelieves
wouldberequiredtosatisfyinternationalagreementsundertheParis
ClimateAccords(IEA,2021b).
2
Asisreadilyapparentfromthegraph,bothelectricvehiclesalesand
batterystoragecapacitygrowthareexpectedtobeseveralordersof
magnitudegreaterthanproductionin2020.Electriccarsales(inthe
leftpanel),areexpectedtorisefromapproximately3millionin2020,
Figure1:TheAdoptionofEVsandBatteryStorageisSettoAccelerate
RapidlyovertheComingDecades
AnnualelectriccarsalesandbatterystoragecapacityintheSDS
Batterystoragecapacityadditions
80
70
60
50
40
30
20
10
120
100
80
Japan
EuropeanUnion
UnitedStates
India
40
China
20
STEPS(World)
2020
2030
2040
2020
2030
2040
IEA.Allrightsreserved.
Note:Electriccarsincludebatteryelectricandplug-inhybridelectricpassengerlight-dutyvehicles,butexclude2/3-wheelers.
Source:IEA(2020c).
Source:IEA,2021b:84.
2
TheInternationalEnergyAgencypublishesagreatdealofdataregardingelectricvehicle
production,composition,manufacturing,andproductionofrawmaterials.AstheIEAis
consideredanauthoritative,quasi-independentsourceofinformationontheseissues,
wewillrelyheavilyontheirlatestpublicationsinthisstudy.
Atthesametime,theauthormakesnoclaimsregardingtheplausibilityofIEA’smathe-
maticalmodelingusedtogeneratesomeoftheseestimates.However,asitisassumed
thatIEA’sdatawillsignificantlyinfusegovernmentpolicydevelopment,thesemodeled
estimatesareworthyofattention.Aswithmostmathematicalmodelingexercises,which
frequentlyrely(ofnecessity)onanarrayofsubjectiveassumptions,theauthoradvises
cautioninassumingthesemodelsarereliablereflectionsofreality.
7
8
KennethP.Green
Figure2:EVandBatteryStorageDeploymentGrowththrough2040
EVandbatterystoragedeploymentgrowsrapidlyoverthenexttwodecades,
withlight-dutyEVsaccountingforaround80%ofthetotal
Globalbatterycapacityadditions
Heavy-dutyPHEV
Heavy-dutyBEV
Light-dutyPHEV
Light-dutyBEV
STEPS
SDS
IEAAllrightsreserved
Source:IEA,2021b:87.
Note:STEPS=StatedPolicyScenariosofworldgovernmentspursuanttoParisclimateaccord.
SDS=SustainableDevelopmentScenariosoftheInternationalEnergyAgency.
to40millioninonly10years:amorethan10-foldincrease,andtothen
nearlydoubleinthedecadebetween2030and2040.
ReadersshouldnotethatthisIEAmodelincludes“plug-inhybrid”elec-
tricvehicleswhich,aspreviouslymentioned,arenottreateduniformly
invariousnationalandinternationalplansregardingvehicleelectrifi-
cationtargetsandtimelinesdiscussedabove.
Correspondingly,IEAestimatesthatbatteryproductionwillalso
increasesignificantlyincomingyearsasisdisplayedinfigure2.
Aswithfigure1,onewillnotethatthe“ramp”ofincreasedbattery
powerproductionisverysteep.AstheIEAstates,“IntheSDS[Sustain-
ableDevelopmentScenarios],globalinstallationofutility-scalebat-
terystorageissetfora25-foldincreasebetween2020and2040,with
annualdeploymentreaching105GWby2040.Thelargestmarketsfor
batterydeploymentin2040areIndia,theUnitedStatesandChina”
(IEA,2021b:86).
Theincreasedproductionofbatterieswillinevitablyleadtoincreased
demandforthemetalsusedintheirfabrication.Hence,theIEAalso
projectssignificantgrowthindemandforEVbatterymetalsand
minerals.
HOWWILLGLOBALVEHICLEELECTRIFICATION
INFLUENCEMINERALANDMETALPRODUCTION
REQUIREMENTS?
AccordingtotheInternationalEnergyAgency,electricvehiclesuse
aboutsixtimesmoreraremetalsthandointernalcombustionvehi-
cles.Figure3breaksthisoutgraphicallybythevariousmetalsrequired
forEVproduction.Thedatainfigure3showthekeymetalsusedin
thevehicleelectrificationequation.Copper,lithium,nickel,cobalt,and
graphitestandoutsharplyascomponentsofelectricvehiclesthatwill
beneededinquantitiesfarhigherthanisthecaseforconventional
internalcombustionvehicles.
Figure4putsthisinformationintocontextwithrespecttoIEA’spro-
jectedgrowthinmineraldemandforEVsthrough2040.Readerswill
notethatthechartofexpecteddemandessentiallyshowsexponential
growth.Lookingattheright-handpanelofthechart,onenotesthattwo
metals—lithiumandnickel(criticalbatteryelements)areexpectedto
Source:IEA2021d.
9
10KennethP.Green
Figure4:ProjectedGrowthinMineralDemandforEVs,2020through2040.
MineraldemandforEVSintheSDSgrowsbynearly30timesbetween2020and2040,
withdemandforlithiumandnickelgrowingbyaround40times
STEPS
Nickel
Cobalt
Manganese
Copper
Graphite
Silicon
REEs
IEAAllrightsreserved
NoteSiliconisexcludedfromthedemandgrowthgraphduetoitsveryhighgrowthover-foldincreasestartingfromalowbase
Source:IEA,2021b:98.
Note:STEPS=StatedPolicyScenariosofworldgovernmentspursuanttoParisclimateaccord.
SDS=SustainableDevelopmentScenariosoftheInternationalEnergyAgency.
Figure5:DistributionoftheProductionofSelectedMineralsbyGovernance
andEmissionsPerformance,2019
Distributionofproductionofselectedmaterialsbygovernanceandemissionsperformance,2019
100%
Lowgovernancescoreand
highemissionsintensity
80%
Lowgovernancescoreand
lowemissionsintensity
60%
Highgovernancescoreand
highemissionsintensity
40%
20%
Highgovernancescoreand
lowemissionsintensity
Copper
Lithium
Nickel
Cobalt
IEA.Allrightsreserved.
Source:IEA,2021b:126.
CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?11
seethegreatestgrowthindemand,followedbycopper(akeycompo-
nentofelectronicsystems),andgraphite,alsoacriticalcomponentin
theproductionofbatteries.Addeddemandforsteel-makingmetals
(manganeseandcobalt),whilelarge,islowerthanthatrelatedtoEV
batteryproduction.
Figure5showswheretheInternationalEnergyAgencyexpectsthemet-
alsandmineralsneededfortheelectricvehicletransitiontocomefrom,
andcharacterizesthequalityofgovernanceintheminingregionsthat
currentlyproduceneededEVmetals.
Figure6suggests,further,thattheIEAdoesnotexpecttheproduction
localesofthesecriticalmetalstochangeverymuchinthenearfuture.
HowwillallofthisplayoutwithregardtotheminingofEVbattery
metalsandminerals?InitsGlobalElectricVehicleOutlook2022,theIEA
againoffersestimates.AsFigure7shows,bothofIEA’sfuturescenarios
requireamassiveincreaseinthenumberofminesneededtoprovide
materialsforeveryaspectoftheEVtransition.Fiftynewlithiummines
areneededby2030,inthe“AnnouncedPledgesscenario”(avariation
Figure6:ExpectedChangeinDistributionofCountriesProducing
EVMinerals,2019to2025
Geographicconcentration:Analysisofprojectpipelinesindicatesthat,inmostcases,the
geographicalconcentrationofproductionisunlikelytochangeinthenearterm
2015
2025
2025
2015
2025
2015
2025
2025
Copper
Nickel
Cobalt
Source:IEA,2021b:121.
12KennethP.Green
ontheSTEPSscenariobasedonestablishedgovernmentpledges)along
with60morenickelmines,and17morecobaltmines.Thematerials
neededforcathodeproductionwillrequire50moremines,andanode
materialsanother40.Thebatterycellswillrequire90moremines,and
EVsthemselvesanother81(IEA,2022:175).Intotal,thisis388new
mines.Forcontext,asof2021,therewereonly270metalminesoper-
atingacrosstheUS,andonly70inCanada.
Figure7:NumberofMinesRequiredtoProduceNeededMineralsfortheGrowthofElectricVehicles
Numberofminestoproducerequiredlevelsofmetals,anode/cathodeproductionplants,battery
gigafactoriesandEVplantsrequiredtomeetprojecteddemandin2030relativeto2021
Lithium
Nickel
Cobalt
Cathode
Anode
Batterycells
EVs
Batteries
EVs
Source:IEA,2022:175.
Note::STEPS=StatedPolicyScenariosofworldgovernmentspursuanttoParisclimateaccord.
SDS=SustainableDevelopmentScenariosoftheInternationalEnergyAgency.
APS=AnnouncedPledgesScenario(AssumedcomparabletoSDSabove).
Ina2022articletitled“TheRaw-MaterialsChallenge:HowtheMetals
andMiningSectorWillBeAttheCoreofEnablingtheEnergyTransi-
tion,”theMcKinseycompanyshowshowitenvisionsthesupplyofraw
materialsformetalswouldhavetoexpandfromcurrentlevelstomeet
theEVsalesgrowthtargetsunderascenariooflimitingclimatechange
to1.5°C(whichisessentiallytheParisAccordupperlimitforcontaining
climatechange).
Asfigure8shows,whileallmetalsproductionisprojectedtoincrease,
lithiumproductionisexpectedtoincreaseover700percent,with
CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?13
demandrunningsohighthatsubstituteelementscouldberequired
tomeetdemand.
Figure8:RawMaterialSupplyGrowthNeededtoSatisfyPredictedElectricVehicle
SalesGrowth
Supplychange,2010–20vsrequiredgrowthin2020–30ina1.5Cdegreepathway1,percent
Copper
Lithium
Mayrequire
significant
substitution
Neodymium
Nickel
Source:McKinsey,2022.
ISMININGFOREVMETALSANDMINERALSLIKELYTO
KEEPUPWITHPROJECTIONSLIKETHOSEOFTHEIEA
ANDMCKINSEY?
AcriticalassumptionembeddedintheideaofanEVtransitionisthatthe
worldwillbeabletoproducethematerials—particularlythemetals—
neededtobuildelectricvehicles,ingovernment’schosenquantities,
ongovernment’schosentimelines.Thosematerialsincludenumerous
metals,includingcopper,lithium,nickel,manganese,cobalt,graphite,
andasmatteringofothermetalsandmineralsgenerallylumpedinto
thecategoryofrareearthelements.Skepticalvoicesare,well,skeptical.
InaninterviewwithYahoo!Finance,KeithPhillips,CEOofPiedmont
Lithium(PLL),toldreporterAkikoFujitathat“There’sgoingtobeareal
crunchtogetthematerial.Wedon’thaveenoughintheworldtoturn
thatmuch[lithium]productionintheworldby2035.”Phillipscontinued
toexplainthat,“…aslowpermittingprocesshasstalledapprovalsfor
newproductionsites.Meanwhile,Chinahascontinuedtodominate
theindustry,refiningmorethanhalfofalllithiumsupplywhileAus-
traliaandChileremainthelargestproducersintheworld.Projectsget
permitted[inAustralia]inunderayear…Here,it’stwo,four,six,seven,
eightyears,whichisaproblem,especiallyinabusinessthat’sbooming
sofast”(Fujita,2022).
OthersbelievethefearsofaLithiumcrunchareoverblown.Inanarticle
byDavidKramerinPhysicsToday,Benchmark(amineral-marketanal-
ysisfirm)productdirectorAndrewMillerobservesthatwhileforecast
shortagestakeintoaccountwhat’shappeningnow,andknowntobe
indevelopment,“lithiumisnotscarce,sothequestionishowquickly
resourcescanbedevelopedoracceleratedtomeettheserequirements.”
Inthesamearticle,RoderickEggert,aneconomicsprofessorattheCol-
oradoSchoolofMines,isquotedasobserving,“Thereisasignificant
amountofunusedminingcapacity,principallyinAustralia,thatshould
allowgrowthindemandoverthenextfewyearstobemetwithouta
14
CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?15
dramaticincreaseinprice.”Eggertfurtherobservesthat“Therearea
lotofundevelopedresourcesfrombothAustraliaandSouthAmerica,
andtheywillcompeteagainstoneanother”(Kramer,2021).
Forallthatminingisamassiveglobalendeavour,harddataonthe
timelinesofminingplanning,permitting,construction,andproduc-
tionarescarceinpubliclyaccessibleliterature.TheFraserInstitutehas
attemptedtomeasuretimelineuncertainty,anditsgrowth,inpubli-
cationssince2015.Inthefirsteffort,theauthor(withcolleagueTaylor
Jackson),lookedatthetimelinesofpermitacquisitioninCanada.What
wefound,eventhen,isgroundsforskepticismabouttherapidexpan-
sionofminingactivitiesinCanada,orincountrieswithcomparable
regulatoryregimes(GreenandJackson,2015).
Asfigure9shows,evenin2014(whenthedatawasgathered)mining
permittimesinCanadawereperceivedbyminingcompanyexecutives
(globally)tohavebeenlengtheningfor10years.
Miningpermittinganddevelopmenttimelinesdonotlookmuchbetter
intheUnitedStates.InanarticleinMiningMagazinefrom2020,Kevin
ShawandDanWhitmoregiveanexampleofoneUS-basedmining
endeavourthattookratherlongerthanexpected:“Thepropertyfor
theKensingtongoldminewaspurchasedin1987.Theinitialpermits
Figure9:ChangesintheTime-to-PermitApproval,2004to2014.
LengthenedConsiderably
LengthenedSomewhat
StayedtheSame
Source:JacksonandGreen,2015:5.
16KennethP.Green
fortheminewererequestedin1990,andproductionwasanticipated
tocommencein1993;however,aseriesofpermittingissuesresulted
inthemineonlybeginningcommercialproductionin2010(adelay
of17years).Litigationconcerningakeypermitthathadbeenissued
wentallthewaytotheU.S.SupremeCourtbeforebeingupheld.Atthe
outset,theKensingtongoldminewasestimatedtocostUS$195mil-
liontobuild.ThefinalcostforconstructionwasUS$290million.Atthe
beginningoftheproject,productioncostswereestimatedtobeUS$225
perounceofgold.Attheend,productioncostshadincreasedby34
percentperounceandthecompanyreduceditsanticipatedproduction
ofgoldbyalmostathird”(ShawandWhitmore,2020).
ShawandWhitmoredescribedanotherUSminingproject,theRose-
montCopperproject,thatwassubmittedtotheUSForestservicefor
approvalin2007,butlitigationandoppositionbyindigenousgroups
delayedtheprojectforover13years(ShawandWhitmore,2020).
A2016reportbytheUnitedStatesGovernmentAccountabilityOffice
(GAO)issomewhatdated,butitskeyfindingsarestillrevealing:
Fromfiscalyears2010through2014,BLM[BureauofLandManage-
ment]approved66mineplans,andtheForestServiceapproved2
mineplansforhardrockminesthatvariedbymineraltype,mine
size,andlocation.Thelengthoftimeittookfortheagenciesto
reachthethirdstepofthefive-stepmineplanreviewprocess—the
stepinwhichthemineplanisapproved—rangedfromabout1
monthtoover11yearsandaveragedapproximately2years.(GAO,
2016)
Infigure10,theInternationalEnergyAdministrationalsooffersdata
regardingthetimelinesfordevelopmentoflithiumandnickelmines,
bothgloballyandinselectjurisdictions.Asareminder,lithium,the
componentmostcrucialforelectricvehiclebatteries,islikelytobethe
rate-controllingmetalneededfortheEVtransitiontounfoldaccording
tothevariousambitiousgovernmentaltimelines.
TheIEAalsodiscussestheimportanceofinvestmentleadtimesinthe
productionofvariouselementsandstagesofEVbatteryproduction.
CanMetalMiningMatchtheSpeedofthePlannedElectricVehicleTransition?17
Figure10:MiningProjectDevelopmentLeadTimes(inYears)
Projectdevelopmentleadtimes:Markettightnesscanappearmuchmorequicklythannewprojects
Lithium(Australia)
Lithium(SouthAmerica)
Nickel(Sulfide)
Nickel(Laterite)
Copper
Source:IEA,2021b:122.
Figure11showswhatIEAconsiders“typical”leadtimestoinitialpro-
duction(i.e.,mining)oflithium,nickel,andbatterycathodeingredients
(suchascobaltandmagnesium),productionofthebatteriesthem-
selves,andproductionofelectricvehicles.Ascanbeseen,thelead
times—thetimebeforeproductionbegins—arerelativelyshortfor
theactualmanufacturingandbuildingofproducts(EVsandbatteries),
butsignificantlylongerforthemetalsandmineralsthatgointothem.
WhiletheleadtimeformanufacturedaspectsofEVproduction,such
asEVproductionitself,isonlyestimatedataboutthreeyearsinthis
figure,andbatteryproductionataboutfiveyears,lithiumandnickel
leadtimesareupwardsof15years.
Finally,historictrendsinmining,atleastint
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025届四川省成都市高三第二次诊断考试政治试题(原卷版+解析版)
- 《物联网技术案例教程》课件-第8章46
- 四海省广元市苍溪县2024-2025学年九年级上学期期末质量监测数学试题 (原卷版+解析版)
- 《跨境电商》课件-9.跨境店铺优化
- 《Linux操作系统》课件-1.认识Linux(全)
- 景区开发石子运输合同样本
- 项目协作与会议记录会议纪要
- 广告行业广告投放手册
- 《建设项目设计概算编审规范》
- 大数据分析在企业决策中的实践应用报告
- 国家自然科学基金申请讲座培训课件
- 国家开放大学《心理与健康》形考任务1-3参考答案
- 新概念英语第二册知识点梳理
- 产程的观察和护理课件
- 防波堤施工方案
- 北师大版小学数学1-6年级上下册知识点整理与归纳2
- 大工22春《工作分析》在线作业三
- 麻醉学复试题单
- 《旅游摄影》课程教学大纲(本科)
- 2022年汉字听写大会竞赛题库(含答案)
- 管道设计解析课件
评论
0/150
提交评论