




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
21.3《实际问题与一元二次方程》分层练习考查题型一传播问题1.(2023·广东阳江·统考一模)自2023年1月以来,甲流便肆虐横行,成为当前主流流行疾病.某一小区有1位住户不小心感染了甲流,由于甲流传播感染非常快,小区经过两轮传染后共有121人患了甲流.(1)每轮感染中平均一个人传染几人?(2)如果按照这样的传播速度,经过三轮传染后累计是否超过1500人患了甲流?【答案】(1)10人(2)不超过【分析】(1)设每轮感染中平均一个人传染x人,根据题意列方程解方程即可;(2)根据(1)可知每轮感染中平均一个人传染10人,进而得到三轮后患病总人数为1331即可解答.【详解】(1)解:设每轮感染中平均一个人传染x人.根据题意得1+x+x1+x解得x=10,或x=-12,∵x>0,∴x=10,答:每轮感染中平均一个人传染10人;(2)解:根据题意可得:第三轮的患病人数为10+13∵1331<1500,∴经过三轮传染后累计患甲流的人数不会超过1500人,答:经过三轮传染后累计患甲流的人数不超过1500人;【点睛】本题考查了一元二次方程与实际问题,读懂题意明确数量关系是解题的关键.2.(2023·安徽合肥·统考三模)如果不防范,病毒的传播速度往往很快,有一种病毒1人感染后,经过两轮传播,共有361人感染.(1)平均每人每轮感染多少人?(2)第二轮传播后,人们加强防范,使病毒的传播力度减少到原来的a%,这样第三轮传播后感染的人数只是第二轮传播后感染人数的10倍,求a的值.【答案】(1)18人(2)50【分析】(1)设平均每人每轮感染x人,开始是1个人,则第一轮感染x人,第二轮感染xx+1人,根据经过两轮传播,共有361人感染,得出关于x(2)由第二轮传播后,病毒的传播力度减少到原来的a%可知,第三轮的传染人数为361×18×a%,根据第三轮传播后感染的人数只是第二轮传播后感染人数的10倍列出关于a的方程求解即可.【详解】(1).解:设平均每人每轮感染x人,根据题意得,1+x+xx+1解得x1=18,答:平均每人每轮感染18人;(2)依题意得:361+361×18⋅a%=361×10,解得a=50,答:a的值为50.【点睛】本题考查了一元二次方程的实际应用,读懂题意找出等量关系列方程求解是解答本题的关键.3.(2022秋·广东汕头·九年级统考期末)某校“生物研学”活动小组在一次野外研学实践时,发现某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支.若主干、支干和小分支的总数是91,求这种植物每个支干长出的小分支个数是多少?【答案】9【分析】设这种植物每个支干长出的小分支个数是x,根据主干、支干和小分支的总数是91,即可得出关于x的一元二次方程,解之取其正值即可得出答案.【详解】解:设这种植物每个支干长出的小分支个数是x,根据题意,可得1+x+x整理得x2解得x1=9,答:这种植物每个支干长出的小分支个数是9.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.4.有一个人收到短信后,再用手机转发短信息,每人只转发一次,经过两轮转发后共有133人收到短信,问每轮转发中平均一个人转发给多少人?【答案】每轮转发中平均一个人转发给11人【分析】设每轮转发中平均一个人转发给x人,根据题意可得出第一轮转发共有(1+x)人收到短信,则第二轮转发共有(1+x+x2)人收到短信,由此可列出关于x【详解】解:设每轮转发中平均一个人转发给x人,由题意得:1+x+x解得:x1∴每轮转发中平均一个人转发给11人.【点睛】本题考查一元二次方程的实际应用.理解题意,找出等量关系,列出等式是解题关键.考查题型二增长(下降)率问题1.(2023·湖南长沙·校考二模)随着我国数字化阅读方式的接触率和人群持续增多,数字阅读凭借独有的便利性成为了更快获得优质内容的重要途径.某市2020年数字阅读市场规模为400万元,2022年数字阅读市场规模为576万元.(1)求2020年到2022年该市数字阅读市场规模的年平均增长率;(2)若年平均增长率不变,求2023年该市数字阅读市场规模是多少万元?【答案】(1)20%(2)预计2023年该市数字阅读市场规模是691.2万元【分析】(1)设2020年到2022年该市数字阅读市场规模的年平均增长率为x,利用2022年该市数字阅读市场规模=2020年该市数字阅读市场规模×1+2020年到2022(2)利用2023年该市数字阅读市场规模=2022年该市数字阅读市场规模×1+2020年到2022【详解】(1)解:设2020年到2022年该市数字阅读市场规模的年平均增长率为x根据题意得:400解得:x1=0.2=20%,答:2020年到2022年该市数字阅读市场规模的年平均增长率为20%(2)576×1+20%∴预计2023年该市数字阅读市场规模是691.2万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据各数量之间的关系,列式计算.2.(2023·广东肇庆·校考二模)电动自动车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)假设每月的增长率相同,预计4月份的销量会达到300辆吗?【答案】(1)20%(2)预计4月份的销量不会达到300辆【分析】(1)设该品牌电动自行车销售量的月均增长率为x,根据题意列出方程求解即可;(2)依据(1)中增长率计算比较即可.【详解】(1)解:设该品牌电动自行车销售量的月均增长率为x,根据题意列方程:1501+x解得x1=-2.2答:该品牌电动自行车销售量的月均增长率20%.(2)216×1+20%∴预计4月份的销量不会达到300辆.【点睛】本题考查了一元二次方程的应用.判断所求的解是否符合题意,舍去不合题意的解,找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.3.(2023·陕西渭南·统考一模)随着环保意识日益深入,我国新能源汽车的生产技术也不断提升.市场上某款新能源汽车1月份的售价为25万元/辆,3月份下降到20.25万元/辆,求该款汽车售价的月平均下降率.【答案】10%【分析】根据下降率公式,下降前(1-下降率)2=下降后,列出方程求解即可.【详解】解:设该款汽车售价的月平均下降率是x,由题意得:251-x解得:x1=0.1=10%,∴该款汽车售价的月平均下降率是10%.【点睛】此题考查了一元二次方程的实际应用,解题的关键是掌握下降率公式.4.(2022秋·吉林四平·九年级统考期末)随着市民环保意识的增强,烟花爆竹销售量逐年下降.某市2020年销售烟花爆竹20万箱,到2022年烟花爆竹销售量为9.8万箱.求该市2020年到2022年烟花爆竹年销售量的平均下降率.【答案】30%【分析】根据题意列出等量关系:2022年销售烟花爆竹量×(1-平均下降率)×(1-平均下降率)=2020年销售烟花爆竹量,即可解题.【详解】解:设该市2020年到2022年烟花爆竹年销售量的平均下降率为x,由题意得:201-x解得x1=0.3=30%,经检验:x1答:该市2020年到2022年烟花爆竹年销售量的平均下降率为30%.【点睛】本题考查了一元二次方程的实际应用,正确列出等量关系是解题的关键.考查题型三循环问题1.无为市某中学九年级学生数学交流会上,每两名学生握手一次,统计后发现共握手66次,求参加这次数学交流会的学生有多少人?【答案】参加这次数学交流会的学生有12人【分析】每个学生都要和他自己以外的学生握手一次,但两个学生之间只握手一次,所以等量关系为:12×学生数×(学生数-1)【详解】解:设参加此会的学生为x名,则每个学生都要握手x-1次,根据题意得:12解得:x1=12,答:参加这次数学交流会的学生有12人.【点睛】本题考查用一元二次方程解决握手次数问题,得到总次数的等量关系是解决本题的关键.2.组织一次排球邀请赛,参赛的每两个队之间都要比赛一场,计划比赛28场,比赛组织者应邀请多少个队参加比赛?【答案】8【分析】设比赛组织者应邀请x个队参加比赛,根据“参赛的每两个队之间都要比赛一场,计划比赛28场”列方程并求解即可.【详解】解:设比赛组织者应邀请x个队参加比赛,由题意得,12整理得,x2解得,x1=8,答:比赛组织者应邀请8个队参加比赛.【点睛】此题考查了一元二次方程的应用,根据题意正确列出方程是解题的关键.3.(2019秋·江西赣州·九年级统考期中)参加一次足球联赛的每两队之间都进行两次比赛,共比赛72场比赛,共有多少个队参加比赛.【答案】共有9个队参加比赛【分析】设共有x个队参加比赛,根据共比赛72场比赛,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】解:设共有x个队参加比赛,依题意,得:x(x-1)=72,整理,得:x2解得:x1答:共有9个队参加比赛.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.4.某小组要求每两名同学之间都要写评语,小组所有同学一共写了42份评语,这个小组共有学生多少人?【答案】7.【分析】设这个小组有学x生人,每人要写评语(x-1)份,则评语共有x(x-1)份,再与总共42份评语建立等量关系,列出一元二次方程.【详解】解:设这个小组有学x生人,由题意得:x(x-1)=42,整理的得:x2解得x1=7,x答:这个小组共有学生7人.【点睛】本题是一元二次方程的应用,注意找准等量关系,另外注意与“握手原理”对比理解.考查题型四几何问题1.(2021秋·广东河源·九年级校考期中)如图,有一农户用24m长的篱笆围成一面靠墙(墙长12m),大小相等且彼此相连的三个矩形鸡舍.(1)鸡舍的面积能够达到32m(2)鸡舍的面积能够达到80m【答案】(1)能,垂直于墙的一边长为4m,平行于墙的一边长为8m(2)不能,理由见解析【分析】(1)设垂直于墙的一边长xm,根据题意可得24-4x⋅x=32(2)设垂直于墙的一边长xm,由题意可得:24-4x⋅x=80【详解】(1)解:能,理由如下:设垂直于墙的一边长xm,由题意可得:24-4x⋅x=32整理得:x2解得:x1=4,当x=2时,24-4x=24-4×2=16>12(不符合题意,舍去),当x=4时,24-4x=24-4×4=8<12,符合题意,∴x=4m,∴垂直于墙的一边长为4m,平行于墙的一边长为8m,(2)解:不能,理由如下:设垂直于墙的一边长xm,由题意可得:24-4x⋅x=80整理得:x2∵△=-6∴此方程无实数根,∴不能.【点睛】本题主要考查了一元二次方程的应用,读懂题意,正确列出一元二次方程是解题的关键.2.(2023春·广东揭阳·九年级统考期末)如图,用篱笆靠墙围成矩形花圃ABCD,墙可利用的最大长度为15米,花圃一面利用墙,其余三面用篱笆围成,篱笆总长为24米.
(1)若围成的花圃面积为40平方米时,求BC的长;(2)围成的花圃面积能否为75平方米,如果能,请求BC的长;如果不能,请说明理由.【答案】(1)BC的长为4米(2)不能围成面积为75平方米的花圃.理由见解析【分析】(1)设BC的长度为x米,根据矩形的面积公式,列出方程进行求解即可;(2)根据题意,列出方程,利用判别式进行判断即可.【详解】(1)解:设BC的长度为x米,则AB的长度为24-x2根据题意得:x⋅24-x2整理得:x2解得:x1=4,∵20>15,∴x2答:BC的长为4米.(2)不能围成,理由如下:
当x⋅24-x2整理得,x∵Δ=-24∴该方程无实数根,∴不能围成面积为75平方米的花圃.【点睛】本题考查一元二次方程的实际应用.找准等量关系,正确的列出方程,是解题的关键.3.(2020秋·广东清远·九年级期末)如图,某中学准备在校园里利用围墙的一段MN,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌40m长的墙的材料.(1)当AB长度是多少时,矩形花园的面积为150米2;(2)能否围成矩形花园面积为220米2,为什么?【答案】(1)15米(2)不能,理由见解析【分析】(1)设AB=xm,则BC=(40-2x)m,根据矩形花园的面积为150m2,即可得出关于x的一元二次方程,解之即可得出x的值,再结合围墙MN最长可利用(2)设AB=ym,则BC=(40-2y)m,根据矩形花园的面积为220m2,即可得出关于y的一元二次方程,由根的判别式Δ=-40<0,即可得出该方程无实数根,进而可得出不能围成面积为【详解】(1)解:设AB=xm,则BC=(40-2x)m,依题意得:x(40-2x)=150,整理得:x2解得:x1=5,当x=5时,40-2x=30>25,不合题意,舍去;当x=15时,40-2x=10<25,符合题意.答:当AB长度是15m时,矩形花园的面积为150m(2)不能,理由如下:设AB=ym,则BC=(40-2y)m,依题意得:y(40-2y)=220,整理得:y2∵Δ=(-20)∴该方程无实数根,∴不能围成面积为220m【点睛】本题考查了一元二次方程的应用以及根的判别式,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)牢记“Δ当<0时,方程无实数根”.4.如图,有一农户要建一个长方形鸡舍,鸡舍的一边利用长为am的墙,另外三边用25m长的篱笆围成,为方便进出,在垂直于墙的一边CD上留一个1m(1)若a=12,则长方形的边长分别为多少时,鸡舍的面积为80m(2)问a的值在什么范围内时,题(1)的解有两个解?一个解?无解?【答案】(1)长方形鸡舍的长为10m,宽为8m(2)a≥16,解有两个;10≤a<16,解有一个;0<a<10无解【分析】(1)设宽为xm,根据所用篱笆长为25m得长为26-2xm,再由x26-2x=80解出x(2)根据(1)知,长方形中平行于墙的边长为10m或16m为临界点可分为三个范围分别是a≥16,解有两个,10≤a<16,解有一个,0<a<10无解.【详解】(1)解:设长方形鸡舍垂直于房墙的一边长为xm,则长方形鸡舍的另一边长为26-2xm依题意,得x26-2x解得x1当x=5时,26-2x=16>12(舍去),当x=8时,26-2x=10<12.答:长方形鸡舍的长为10m,宽为8m;(2)解:由(1)知,长方形中平行于墙的边长为10m或16m,∴当a≥16时,(1)中的解有两个,当10≤a<16时,(1)中的解有一个,当0<a<10时,无解.【点睛】本题考查了一元二次方程的实际应用,解题关键在于找准等量关系建立方程.5.(2023秋·辽宁抚顺·九年级统考期末)如图,在长为32米、宽为20米的矩形地面上修筑同样宽的道路(图中阴影部分),小路与矩形的一边垂直,余下部分种植草坪,要使草坪面积为540平方米,求小路的宽.【答案】2米【分析】设道路的宽为x米,利用平移把横向和纵向的小路移到长和宽上,把不规则的图形变为规则图形,原长方形变为长和宽都减少x米的长方形,根据已知的草坪面积可列出方程,求出答案.【详解】解:设道路的宽为x米,由题意得(20-x)(32-x)=540,整理得x2解得x1=50(不合题意,舍去),x答:道路的宽为2米.【点睛】本题考查了一元二次方程的实际应用问题,找准等量关系并正确列出一元二次方程是解题的关键.考查题型五数字问题1.2021年7月1日是建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为48,求这个最小数(请用方程知识解答).【答案】4【分析】设圈出的四个数中最小数为x,则最大的数为x+8,根据圈出的四个数中最小数与最大数的积为48,即可得出关于x的一元二次方程,解之即可得出x的值.【详解】解:设圈出的四个数中最小数为x,则最大的数为x+8,根据题意得:xx+8得x2解得x1=4,x2=-12故这个最小数是4.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.2.(2022秋·湖南常德·九年级统考期中)已知三个连续偶数的平方和是200,求这三个偶数.【答案】6,8【分析】设中间的偶数为x,则这三个连续的偶数依次为:x-2,x,x+2,根据题意,列出方程并求解,然后分类讨论:当【详解】解:设中间的偶数为x,则这三个连续的偶数依次为:x-2,根据题意,可得:(x-2)2整理可得:x2解得:x=±8,当x=8时,三个连续的偶数依次为:6,当x=-8时,三个连续的偶数依次为:-10,∴这三个连续偶数为:6,8,【点睛】本题考查了一元二次方程的应用,解本题的关键是设未知数,用代数式表示三个连续的偶数,即可列方程求解.3.(2022秋·江苏苏州·九年级统考期中)已知一个数的平方与25的差等于这个数与5的和,求这个数.【答案】这个数为-5或6【分析】根据题意,设这个数为x,列方程x2【详解】解:依题意,设这个数为x,列方程x2即x+5x-5∴x+5x-6解得x1∴这个数为-5或6.【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题的关键.4.一个两位数字,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27【答案】63【分析】设个位数字为x,则十位数字为(x+3),根据这两个数字之积等于这个两位数的27【详解】解:设个位数字为x,则十位数字为(x+3),由题意得,xx+3即7x解得:x1=3,∴十位数字为x+3=6,答:这个两位数为63.【点睛】本题考查解一元二次方程与一元二次方程的应用,熟练掌握因式分解法与正确理解题意是解题的关键,注意应用题中要检验一元二次方程的解是否符合题意.考查题型六销售利润问题1.(2022秋·江苏徐州·九年级校考阶段练习)公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商销售A品牌头盔,此种头盔的进价为30元/个,经测算,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?【答案】50元【分析】设该品牌头盔的实际售价为y元,则此时销量为600-10y-40个,根据利润=单个利润×【详解】解:设该品牌头盔的实际售价为y元,依题意,得:y-30600-10∴y2解得:y1=80,∵尽可能让顾客得到实惠,∴y=50答:该品牌头盔的实际售价应定为50元.【点睛】本题考查了一元二次方程的应用,明确题意,列出一元二次方程是解答本题的关键.2.(2023秋·广东茂名·九年级统考期末)直播购物逐渐走进了人们的生活.某电商平台助力乡村振兴,帮助农户销售一种黑衣花生.从农户手中的进价为每千克40元,按每千克60元的价格出售,每天可售出400千克.调查发现,当售价每千克降低1元时,则每天销量可增加50千克.(1)当售价每千克降低10元时,每天销售这种花生______千克,每天获得利润______元;(2)若要使每天的利润为9750元,同时又要尽快减少库存,则每千克这种花生应降价多少元?【答案】(1)900,9000(2)每千克这种花生应降价7元【分析】(1)根据售价每千克降低1元时,则每天销量可增加50千克,可求出售价每千克降低10元时的销售量,由此可求出利润;(2)设每千克这种花生应降价x元,根据题意例一元二次方程方程,解方程,根据实际情况确定方程的根,即可求解.【详解】(1)解:进价为每千克40元,按每千克60元的价格出售,每天可售出400千克,售价每千克降低1元时,则每天销量可增加50千克,∴当售价每千克降低10元时,售价为每千克50元,销量为400+10×50=900(千克),∴获得的利润为(50-40)×900=9000(元),故答案为:900,9000.(2)解:设每千克这种花生应降价x元,根据题意得:(60-40-x)(400+50x)=9750,整理得,x2解方程,得,x1=5,∵要尽快减少库存,∴x=7,∴每千克这种花生应降价7元.【点睛】本题主要考查一元二次方程与销售问题,理解销售中的数量关系,掌握一元二次方程解实际问题的方法是解题的关键.3.“天使草莓”是通过草莓杂交育种、脱毒育苗筛查等生物技术而培育的一种草莓品种,因其外观通体雪白、色泽透亮、汁多味美而深受广大消费者欢迎.今年春季,某水果店以60元/盒的价格购进一批名叫“天使AE”的新品种草莓进行销售.该商家在销售过程中发现当每盒的售价为100元时,平均每天可售出180盒.若每盒的售价每降价5元,则每天可以多售出10盒.设此种草莓每盒的售价为x元,每天销售此种草莓的利润为y元.
(1)用含x的式子表示每盒此种草莓的利润为______元,每天可卖出此种草莓的数量为______盒.(2)若该水果店计划每天销售此种草莓盈利6000元,问此种草莓每盒的售价应定为多少元?【答案】(1)x-60;380-2x(2)90元【分析】(1)根据每盒利润等于每盒售价减每盒成本可得每盒利润,根据每盒的售价每降价5元,则每天可以多售出10盒可得每天可卖出此种草莓的数量;(2)根据每天总利润等于每盒利润乘以每天可卖出此种草莓的数量列出方程求解即可.【详解】(1)解:∵此种草莓每盒的售价为x元,每盒进价60元,∴每盒此种草莓的利润为x-60元;又∵每盒的售价每降价5元,则每天可以多售出10盒,∴每天可卖出此种草莓的数量为:180+100-x5×10=380-2x故答案为:x-60;380-2x(2)由题意得x-60380-2x解得x1=90,x2答:此种草莓每盒的售价应定为90元【点睛】本题考查一元二次方程的应用—利润问题、列代数式,根据等量关系列式和列方程是解题的关键.4.(2023春·天津和平·九年级天津市双菱中学校考开学考试)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)当销售单价为90元时,每月的销售量为___________件.(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?【答案】(1)100;(2)销售单价应定为70元;【分析】(1)根据活动表示出单价数量之间关系,代入求解即可得到答案;(2)设售价为x元,根据利润列方程求解即可得到答案;【详解】(1)解:由题意可得,当销售单价为90元时,销售量为:50+(100-90故答案为:100;(2)解:设售价为x元,由题意可,(x-50)50+(解得:x1=70,∵使顾客获得更多的实惠,∴x=70,答:销售单价应定为70元;【点睛】本题考查一元二次方程解决销售利润问题,解题的关键是找到等量关系式.考查题型七动点几何问题1.(2022秋·陕西西安·九年级校考期中)如图,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s的速度向点D移动.问:(1)P、Q两点从出发开始几秒时,四边形PBCQ的面积为33cm(2)几秒时点P点Q间的距离是10厘米?(3)P,Q两点间距离何时最小?【答案】(1)5秒(2)1.6秒或4.8秒(3)165【分析】(1)表示出PB和CQ,利用梯形的面积公式结合四边形PBCQ的面积为33cm2,即可得出关于(2)过Q作QM⊥AB于M,如果设出发x秒后,QP=10厘米.那么可根据路程=速度×时间,用未知数表示出PM、PQ的值,然后在直角三角形PMQ中,求出未知数的值.(3)在直角三角形PMQ中,PM为0时,PQ就最小,那么可根据这个条件和(1)中用勾股定理得出的PQ的式子,令PM=0,得出此时时间的值.【详解】(1)解:当运动时间为t秒时,PB=16-3tcm,依题意,得:12解得:t=5.答:P,Q两点从出发开始到5秒时,四边形PBCQ的面积为33cm(2)设出发x秒后P、Q两点间的距离是10厘米.则AP=3x,CQ=2x.作QM⊥AB于M,则PM=|16-2x-3x|=|16-5x|,(16-5x)2解得:x=85=1.6∴P、Q出发1.6或4.8秒时,P,Q间的距离是10厘米;(3)∵PQ=(16-5x)∴当16-5x=0时,即x=165时,【点睛】本题考查了一元二次方程的应用,本题结合几何知识并根据题意列出方程,然后求解.2.(2023秋·海南省直辖县级单位·九年级统考期末)如图,△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,同时点Q从点B开始,沿BC边向点C以2cm/s的速度移动,点Q到达点C后,点P停止运动.(1)经过ts后(t>0),△PBQ的面积等于4cm2,求(2)经过ts后,(t>0),PQ的长度为5cm,求t的值;(3)△PBQ的面积能否等于8cm【答案】(1)t的值为1(2)t的值为2(3)△PBQ的面积不能等于8cm【分析】(1)利用时间=路程÷速度,可求出点P到达点B及点Q到达点C所需时间,比较后可得出0<t≤72,当运动时间为ts时,BP=5-tcm,BQ=2tcm.根据△PBQ的面积等于(2)利用勾股定理,可得出关于t的一元二次方程,解之取其符合题意的值即可得出结论;(3)△PBQ的面积不能等于8cm2,假设△PBQ的面积能等于8cm2,根据△PBQ的面积等于8cm2,可得出关于t的一元二次方程,由根的判别式Δ=-7<0【详解】(1)解:∵5÷1=5(s),7÷2=72(s)∴0<t≤7当运动时间为ts时,BP=5-tcm,根据题意得:12即12整理得:t2解得:t1=1,答:t的值为1;(2)解:根据题意得:(5-t)2整理得:t2解得:t1=0(不符合题意,舍去),答:t的值为2;(3)解:△PBQ的面积不能等于8cm假设△PBQ的面积能等于8cm2,根据题意得:即12整理得:t2∵Δ=(-5)∴该方程没有实数根,∴假设不成立,即△PBQ的面积不能等于8cm【点睛】本题考查了一元二次方程的应用、勾股定理以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.3.(2023秋·内蒙古包头·九年级统考期末)△ABC中,∠B=90°,AB=10cm,BC=12cm,点P从点A开始沿边AB向终点B以1cms的速度移动,与此同时,点Q从点B开始沿边BC向终点C以2cms的速度移动.如果P、Q分别从A、B同时出发,当点Q运动到点C时,两点停止运动.设运动时间为(1)填空BQ=______,PB=______(用含t的代数式表示);(2)当t为何值时,PQ的长度等于10cm?(3)是否存在t的值,使得△PBQ的面积等于9cm2?若存在,请求出此时t【答案】(1)2tcm,(2)t=0或4时,PQ的长度等于10cm(3)存在,t=1【分析】(1)根据路程=速度×时间即可得出BQ,AP,然后用AB-AP就可得出PB的值;(2)运用勾股定理可得:PB2+B(3)根据三角形面积计算公式可得:S△BPQ【详解】(1)解:由题意得,∴AP=tcm,BQ=2tcm,∴PB=AB-AP=10-t故答案为:2tcm,10-t(2)∵∠B=90°,∴△PBQ是直角三角形,根据勾股定理得:PB即:10-t2解得:t1=0,∴t=0或4时,PQ的长度等于10cm;(3)由题意得:S△BPQ即12解得:t1=1,∵当点Q运动到点C时,两点停止运动,即2t≤12,解得t≤6,∴t=1时,△BPQ的面积等于9cm2【点睛】本题考查了三角形的动点问题,考查了列代数式,一元二次方程的解法,勾股定理的应用,三角形面积公式的运用,在解答时要注意所求的实际问题有意义.4.如图,在矩形ABCD中,AB=15cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s的速度向点D移动(点P停止移动时,点Q也停止移动).设移动时间为t(s).连接PQ,(1)用含t的式子表示线段的长:CQ=__________;PB=__________.(2)当t为何值时,P、Q两点间的距离为13cm?(3)当t为何值时,四边形APQD的形状可能为矩形吗?若可能,求出t的值;若不可能,请说明理由.【答案】(1)2tcm,15-3t(2)P、Q出发0.6和5.4秒时,P,Q间的距离是13cm(3)P、Q出发3秒时四边形APQD为矩形【分析】(1)根据题意可直接进行求解;(2)可通过构建直角三角形来求解.过Q作QM⊥AB于M,如果设出发t秒后,QP=13cm.那么可根据路程=速度×时间,用未知数表示出PM的值,然后在直角三角形PMQ中,求出未知数的值.(3)利用矩形的性质得出当AP=DQ时,四边形APQD为矩形求出即可【详解】(1)解:由题意得:CQ=2tcm,AP=3tcm,∵AB=15cm,∴PB=15-3t故答案为2tcm,15-3tcm(2)解:设出发t秒后P、Q两点间的距离是13cm.则AP=3t,CQ=2t,作QM⊥AB于M,∵四边形ABCD是矩形,∴∠C=ABC=90°,∴四边形QMBC是矩形,∴∠QMP=90°,QM=BC=5cm,∴PM=15-2t-3t由勾股定理得:(15-5t)2解得:t=0.6或t=5.4,答:P、Q出发0.6和5.4秒时,P,Q间的距离是13cm;(3)解:四边形APDQ的形状有可能为矩形;理由如下:当四边形APQD为矩形,则AP=DQ,即3t=15-2t,解得:t=3.答:当P、Q出发3秒时四边形APQD为矩形.【点睛】本题考查了一元二次方程的应用、勾股定理及矩形的性质,本题结合几何知识并根据题意列出方程是解题的关键.1.正月十五是中华民族传统的节日——元宵节,家家挂彩灯、户户吃汤圆已成为世代相沿的习俗.位于北关古城内的盼盼手工汤圆店,计划在元宵节前用21天的时间生产袋装手工汤圆,已知每袋汤圆需要0.3斤汤圆馅和0.5斤汤圆粉,而汤圆店每天能生产450斤汤圆馅或300斤汤圆粉(每天只能生产其中一种).(1)若这21天生产的汤圆馅和汤圆粉恰好配套,且全部及时加工成汤圆,则总共生产了多少袋手工汤圆?(2)为保证手工汤圆的最佳风味,汤圆店计划把达21天生产的汤圆在10天内销售完毕.据统计,每袋手工汤圆的成本为13元,售价为25元时每天可售出225袋,售价每降低2元,每天可多售出75袋.汤圆店按售价25元销售2天后,余下8天进行降价促销,第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店,若最终获利40500元,则促销时每袋应降价多少元?【答案】(1)总共生产了9000袋手工汤圆(2)促销时每袋应降价3元【分析】(1)设总共生产了a袋手工汤圆,利用这21天生产的汤圆馅和汤圆粉恰好配套做等量关系列出方程即可;(2)设促销时每袋应降价x元,利用最终获利40500元做等量关系列出方程即可.【详解】(1)设总共生产了a袋手工汤圆,依题意得,0.3a解得a=9000,经检验a=9000是原方程的解,答:总共生产了9000袋手工汤圆(2)设促销时每袋应降价x元,当刚好10天全部卖完时,依题意得,225×2×整理得:xΔ=6∴方程无解∴10天不能全部卖完∴第10天结束后将还未售出的手工汤圆以15元/袋的价格全部卖给古城小吃店的利润为15-13∴依题意得,225×2×解得x∵要促销∴x=3即促销时每袋应降价3元.【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程,需要注意分情况讨论.2.2022年2月4日,第24届冬季奥林匹克运动会在北京胜利召开,在冬奥会期间,北京某校打算组织部分师生利用周日时间到现场观看比赛,经了解在离学校最近的比赛场馆当日共有A、B两场比赛,两场比赛的票价如下图所示,其中x轴表示一次性购票人数,y轴表示每张票的价格,如:一次性购买A场比赛门票10张,票价为400元/张,若一次性购买A场比赛门票80张,则每张票价为200元.(1)若一次性购买B场比赛门票10张,则每张票价为___________元(直接写出结果).(2)若一次性购买A场比赛门票a50<a<60张,需支付门票费用多少元?(用a(3)该校共组织120人(每人购买一张门票)分两组分别观看A、B两场比赛,共花费32160元,若观看A场比赛的人数不足50人,则有多少人观看了B场比赛?【答案】(1)420(2)-5a+550(3)99或72【分析】(1)对于B场门票,求得当0≤x≤70时,票价y与购票人数x之间的函数关系式,把x=10代入即可;(2)对于A场门票,求得30≤x≤70时,票价y与购票人数x之间的函数关系式,把x=a代入即可求解;(3)设观看A场比赛的人数为x人,x<50,则观看B场比赛的人数为120-x人,根据题意应分两种情况:第一种情况:当0≤x≤30;第二种情况:当【详解】(1)解:对于B场门票,当0≤x≤70时,票价y与购票人数x之间的函数关系式为y=kx+b,∵该直线过点(70,240),(0,450),∴可得70k+b=240b=450,解得k=-3∴y=-3x+450,∴当x=10时,y=-3×10+450=420,∴一次性购买B场比赛门票10张,则每张票价为420元,故答案为:420;(2)解:对于A场门票,当30≤x≤70时,票价y与购票人数x之间的函数关系式为y=mx+n,∵该直线过点(30,400),(70,200),∴可得70m+n=20030m+n=400,解得m=-5∴y=-5x+550,∴当x=a50<a<60时,y=-5a+550,∴若一次性购买A场比赛门票a50<a<60张,需支付门票费用-5a+550(3)解:设观看A场比赛的人数为x人,x<50,则观看B场比赛的人数为第一种情况:当0≤x≤30,由题意得400x+240120-x解得x=21,∴观看了B场比赛的有120-21=99人;第二种情况:当30<x<50时,由题意得-5x+550x+240解得x1=48,x∴观看B场比赛的人数有120-48=72人,综上可得,观看A场比赛的人数不足50人,则有99人或72人观看了B场比赛.【点睛】本题考查了函数的图象、待定系数法求一次函数的解析式及一次方程的应用,分类讨论分段求解是解题的关键.3.(2023春·河南许昌·九年级校考阶段练习)如图直线y=kx+k交x轴负半轴于点A,交y轴正半轴于点B,且AB=2(1)求k的值;(2)点P从A出发,以每秒1个单位的速度沿射线AB运动,过点P作直线AB的垂线交x轴于点Q,连接OP,设△PQO的面积为S,点P运动时间为t,求S与t的函数关系式,并直接写出t的取值范围;(3)在(2)的条件下,当P在AB的延长线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动合同转让合同
- 大型石材采购合同协议
- 液化气购销合同细则
- 财务管理咨询服务合同例文
- 校园安保人员服务合同
- 重型起重机采购合同
- 工业机器人习题库含答案
- 水利工程劳务分包:合同范本大全
- 电商产品代理销售合同
- 练摊经济学课件
- 肩肘倒立公开课教案陈勇
- JJF 1603-2016(0.1~2.5)THz太赫兹光谱仪校准规范
- 《民法典》-第二编 物权编-案例分析,解读-3
- GB/T 1266-2006化学试剂氯化钠
- 海岸动力学全册配套完整课件
- 工作面防飞矸封闭式管理规定
- 纤维素酶活性的测定
- 干部人事档案管理岗位培训的讲义课件
- 验电接地环安装规范
- 计算机监控系统安装单元工程质量验收评定表
- 外墙干挂大理石施工方案(标准版)
评论
0/150
提交评论