




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古包头市九原区2024届中考猜题数学试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列计算正确的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2•x3=x6 D.(-x)2-x2=02.二次函数的最大值为()A.3 B.4C.5 D.63.不等式组的解集在数轴上表示为()A. B. C. D.4.下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B. C.﹣ D.05.若分式的值为零,则x的值是()A.1 B. C. D.26.如图,小明将一张长为20cm,宽为15cm的长方形纸(AE>DE)剪去了一角,量得AB=3cm,CD=4cm,则剪去的直角三角形的斜边长为()A.5cm B.12cm C.16cm D.20cm7.已知a,b为两个连续的整数,且a<<b,则a+b的值为()A.7 B.8 C.9 D.108.如图,点A,B为定点,定直线l//AB,P是l上一动点.点M,N分别为PA,PB的中点,对于下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤9.cos30°的相反数是()A. B. C. D.10.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A. B.2 C. D.11.如图,在△ABC中,EF∥BC,AB=3AE,若S四边形BCFE=16,则S△ABC=()A.16 B.18 C.20 D.2412.如图,在边长为4的正方形ABCD中,E、F是AD边上的两个动点,且AE=FD,连接BE、CF、BD,CF与BD交于点H,连接DH,下列结论正确的是()①△ABG∽△FDG②HD平分∠EHG③AG⊥BE④S△HDG:S△HBG=tan∠DAG⑤线段DH的最小值是2﹣2A.①②⑤ B.①③④⑤ C.①②④⑤ D.①②③④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不等式组的解集是_____.14.方程的解是__________.15.分解因式:2x3﹣4x2+2x=_____.16.对于任意非零实数a、b,定义运算“”,使下列式子成立:,,,,…,则ab=.17.在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=__.18.已知,直接y=kx+b(k>0,b>0)与x轴、y轴交A、B两点,与双曲线y=(x>0)交于第一象限点C,若BC=2AB,则S△AOB=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?20.(6分)计算:|﹣|﹣﹣(2﹣π)0+2cos45°.解方程:=1﹣21.(6分)如图,在△ABC中,∠ABC=90°,BD为AC边上的中线.(1)按如下要求尺规作图,保留作图痕迹,标注相应的字母:过点C作直线CE,使CE⊥BC于点C,交BD的延长线于点E,连接AE;(2)求证:四边形ABCE是矩形.22.(8分)某年级组织学生参加夏令营活动,本次夏令营分为甲、乙、丙三组进行活动.下面两幅统计图反映了学生报名参加夏令营的情况,请你根据图中的信息回答下列问题:该年级报名参加丙组的人数为;该年级报名参加本次活动的总人数,并补全频数分布直方图;根据实际情况,需从甲组抽调部分同学到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名学生到丙组?23.(8分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图.(1)根据图中所给信息填写下表:投中个数统计平均数中位数众数A8B77(2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明.24.(10分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.25.(10分)阅读下列材料:数学课上老师布置一道作图题:已知:直线l和l外一点P.求作:过点P的直线m,使得m∥l.小东的作法如下:作法:如图2,(1)在直线l上任取点A,连接PA;(2)以点A为圓心,适当长为半径作弧,分别交线段PA于点B,直线l于点C;(3)以点P为圆心,AB长为半径作弧DQ,交线段PA于点D;(4)以点D为圆心,BC长为半径作弧,交弧DQ于点E,作直线PE.所以直线PE就是所求作的直线m.老师说:“小东的作法是正确的.”请回答:小东的作图依据是________.26.(12分)探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次若参加聚会的人数为3,则共握手次:;若参加聚会的人数为5,则共握手次;若参加聚会的人数为n(n为正整数),则共握手次;若参加聚会的人共握手28次,请求出参加聚会的人数.拓展:嘉嘉给琪琪出题:“若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?27.(12分)某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】试题解析:A原式=2x2,故A不正确;B原式=x6,故B不正确;C原式=x5,故C不正确;D原式=x2-x2=0,故D正确;故选D考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.2、C【解题分析】试题分析:先利用配方法得到y=﹣(x﹣1)2+1,然后根据二次函数的最值问题求解.解:y=﹣(x﹣1)2+1,∵a=﹣1<0,∴当x=1时,y有最大值,最大值为1.故选C.考点:二次函数的最值.3、A【解题分析】
分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【题目详解】解不等式①得,x>1;解不等式②得,x>2;∴不等式组的解集为:x≥2,在数轴上表示为:故选A.【题目点拨】本题考查了一元一次不等式组的解法,正确求得不等式组中每个不等式的解集是解决问题的关键.4、B【解题分析】试题分析:根据无理数的定义可得是无理数.故答案选B.考点:无理数的定义.5、A【解题分析】试题解析:∵分式的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.6、D【解题分析】
解答此题要延长AB、DC相交于F,则BFC构成直角三角形,再用勾股定理进行计算.【题目详解】延长AB、DC相交于F,则BFC构成直角三角形,运用勾股定理得:BC2=(15-3)2+(1-4)2=122+162=400,所以BC=1.则剪去的直角三角形的斜边长为1cm.故选D.【题目点拨】本题主要考查了勾股定理的应用,解答此题要延长AB、DC相交于F,构造直角三角形,用勾股定理进行计算.7、A【解题分析】∵9<11<16,∴,即,∵a,b为两个连续的整数,且,∴a=3,b=4,∴a+b=7,故选A.8、B【解题分析】试题分析:①、MN=AB,所以MN的长度不变;②、周长C△PAB=(AB+PA+PB),变化;③、面积S△PMN=S△PAB=×AB·h,其中h为直线l与AB之间的距离,不变;④、直线NM与AB之间的距离等于直线l与AB之间的距离的一半,所以不变;⑤、画出几个具体位置,观察图形,可知∠APB的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线9、C【解题分析】
先将特殊角的三角函数值代入求解,再求出其相反数.【题目详解】∵cos30°=,∴cos30°的相反数是,故选C.【题目点拨】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念.10、C【解题分析】试题分析:连结CD,可得CD为直径,在Rt△OCD中,CD=6,OC=2,根据勾股定理求得OD=4所以tan∠CDO=,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故答案选C.考点:圆周角定理;锐角三角函数的定义.11、B【解题分析】【分析】由EF∥BC,可证明△AEF∽△ABC,利用相似三角形的性质即可求出S△ABC的值.【题目详解】∵EF∥BC,∴△AEF∽△ABC,∵AB=3AE,∴AE:AB=1:3,∴S△AEF:S△ABC=1:9,设S△AEF=x,∵S四边形BCFE=16,∴,解得:x=2,∴S△ABC=18,故选B.【题目点拨】本题考查了相似三角形的判定与性质,熟练掌握相似三角形的面积比等于相似比的平方是解本题的关键.12、B【解题分析】
首先证明△ABE≌△DCF,△ADG≌△CDG(SAS),△AGB≌△CGB,利用全等三角形的性质,等高模型、三边关系一一判断即可.【题目详解】解:∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠ADC=90°,∠ADB=∠CDB=45°.∵在△ABE和△DCF中,AB=CD,∠BAD=∠ADC,AE=DF,∴△ABE≌△DCF,∴∠ABE=∠DCF.∵在△ADG和△CDG中,AD=CD,∠ADB=∠CDB,DG=DG,∴△ADG≌△CDG,∴∠DAG=∠DCF,∴∠ABE=∠DAG.∵∠DAG+∠BAH=90°,∴∠BAE+∠BAH=90°,∴∠AHB=90°,∴AG⊥BE,故③正确,同理可证:△AGB≌△CGB.∵DF∥CB,∴△CBG∽△FDG,∴△ABG∽△FDG,故①正确.∵S△HDG:S△HBG=DG:BG=DF:BC=DF:CD=tan∠FCD,∠DAG=∠FCD,∴S△HDG:S△HBG=tan∠FCD=tan∠DAG,故④正确.取AB的中点O,连接OD、OH.∵正方形的边长为4,∴AO=OH=×4=1,由勾股定理得,OD=,由三角形的三边关系得,O、D、H三点共线时,DH最小,DH最小=1-1.无法证明DH平分∠EHG,故②错误,故①③④⑤正确.故选B.【题目点拨】本题考查了相似三角形的判定与性质,全等三角形的判定与性质,正方形的性质,解直角三角形,解题的关键是掌握它们的性质进行解题.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2<x≤1【解题分析】
本题可根据不等式组分别求出每一个不等式的解集,然后即可确定不等式组的解集.【题目详解】由①得x>2,由②得x≤1,∴不等式组的解集为2<x≤1.故答案为:2<x≤1.【题目点拨】此题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).14、.【解题分析】
根据解分式方程的步骤依次计算可得.【题目详解】解:去分母,得:,解得:,当时,,所以是原分式方程的解,故答案为:.【题目点拨】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.15、2x(x-1)2【解题分析】2x3﹣4x2+2x=16、【解题分析】试题分析:根据已知数字等式得出变化规律,即可得出答案:∵,,,,…,∴。17、5:1【解题分析】
根据题意作出合适的辅助线,然后根据三角形相似即可解答本题.【题目详解】解:作AE∥BC交DC于点E,交DF于点F,设每个小正方形的边长为a,则△DEF∽△DCN,∴==,∴EF=a,∵AF=2a,∴AE=a,∵△AME∽△BMC,∴===,故答案为:5:1.【题目点拨】本题考查相似三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.18、【解题分析】
根据题意可设出点C的坐标,从而得到OA和OB的长,进而得到△AOB的面积即可.【题目详解】∵直接y=kx+b与x轴、y轴交A、B两点,与双曲线y=交于第一象限点C,若BC=2AB,设点C的坐标为(c,)∴OA=0.5c,OB==,∴S△AOB===【题目点拨】此题主要考查反比例函数的图像,解题的关键是根据题意设出C点坐标进行求解.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)当4≤x≤6时,w1=﹣x2+12x﹣35,当6≤x≤8时,w2=﹣x2+7x﹣23;(2)最快在第7个月可还清10万元的无息贷款.【解题分析】分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.详解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,∵工资及其他费作为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,∴==6,即最快在第7个月可还清10万元的无息贷款.点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.20、(1)﹣1;(2)x=﹣1是原方程的根.【解题分析】
(1)直接化简二次根式进而利用零指数幂的性质以及特殊角三角函数值进而得出答案;(2)直接去分母再解方程得出答案.【题目详解】(1)原式=﹣2﹣1+2×=﹣﹣1+=﹣1;(2)去分母得:3x=x﹣3+1,解得:x=﹣1,检验:当x=﹣1时,x﹣3≠0,故x=﹣1是原方程的根.【题目点拨】此题主要考查了实数运算和解分式方程,正确掌握解分式方程的方法是解题关键.21、(1)见解析;(2)见解析.【解题分析】
(1)根据题意作图即可;
(2)先根据BD为AC边上的中线,AD=DC,再证明△ABD≌△CED(AAS)得AB=EC,已知∠ABC=90°即可得四边形ABCE是矩形.【题目详解】(1)解:如图所示:E点即为所求;(2)证明:∵CE⊥BC,∴∠BCE=90°,∵∠ABC=90°,∴∠BCE+∠ABC=180°,∴AB∥CE,∴∠ABE=∠CEB,∠BAC=∠ECA,∵BD为AC边上的中线,∴AD=DC,在△ABD和△CED中,∴△ABD≌△CED(AAS),∴AB=EC,∴四边形ABCE是平行四边形,∵∠ABC=90°,∴平行四边形ABCE是矩形.【题目点拨】本题考查了全等三角形的判定与性质与矩形的性质,解题的关键是熟练的掌握全等三角形的判定与性质与矩形的性质.22、(1)21人;(2)10人,见解析(3)应从甲抽调1名学生到丙组【解题分析】(1)参加丙组的人数为21人;(2)21÷10%=10人,则乙组人数=10-21-11=10人,如图:(3)设需从甲组抽调x名同学到丙组,根据题意得:3(11-x)=21+x解得x=1.答:应从甲抽调1名学生到丙组(1)直接根据条形统计图获得数据;(2)根据丙组的21人占总体的10%,即可计算总体人数,然后计算乙组的人数,补全统计图;(3)设需从甲组抽调x名同学到丙组,根据丙组人数是甲组人数的3倍列方程求解23、(1)7,9,7;(2)应该选派B;【解题分析】
(1)分别利用平均数、中位数、众数分析得出答案;(2)利用方差的意义分析得出答案.【题目详解】(1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;B成绩排序后为6,7,7,7,7,8,故中位数为7;故答案为:7,9,7;(2)=[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;=[(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B.【题目点拨】此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.24、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解题分析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.详解:(1)依题意得:,解得:,∴抛物线的解析式为.∵对称轴为,且抛物线经过,∴把、分别代入直线,得,解之得:,∴直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,∴.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,,∴,,,①若点为直角顶点,则,即:解得:,②若点为直角顶点,则,即:解得:,③若点为直角顶点,则,即:解得:,.综上所述的坐标为或或或.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.25、内错角相等,两直线平行【解题分析】
根据内错角相等,两直线平行即可判断.【题目详解】∵∠E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 劳动合同转让合同
- 大型石材采购合同协议
- 液化气购销合同细则
- 财务管理咨询服务合同例文
- 校园安保人员服务合同
- 重型起重机采购合同
- 工业机器人习题库含答案
- 水利工程劳务分包:合同范本大全
- 电商产品代理销售合同
- 练摊经济学课件
- 肩肘倒立公开课教案陈勇
- JJF 1603-2016(0.1~2.5)THz太赫兹光谱仪校准规范
- 《民法典》-第二编 物权编-案例分析,解读-3
- GB/T 1266-2006化学试剂氯化钠
- 海岸动力学全册配套完整课件
- 工作面防飞矸封闭式管理规定
- 纤维素酶活性的测定
- 干部人事档案管理岗位培训的讲义课件
- 验电接地环安装规范
- 计算机监控系统安装单元工程质量验收评定表
- 外墙干挂大理石施工方案(标准版)
评论
0/150
提交评论