嵌入式系统基础知识_第1页
嵌入式系统基础知识_第2页
嵌入式系统基础知识_第3页
嵌入式系统基础知识_第4页
嵌入式系统基础知识_第5页
已阅读5页,还剩40页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

嵌入式系统基础知识1嵌入式系统的定义和组成1.1嵌入式系统的定义根据IEEE(国际电气和电子工程师协会)的定义,嵌入式系统是“控制、监视或者辅助设备、机器和车间运行的装置”目前国内一个普遍被认同的定义是:以应用为中心、以计算机技术为基础,软件硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗严格要求的专用计算机系统。可以这样认为,嵌入式系统是一种专用的计算机系统,作为装置或设备的一部分。嵌入式系统一般由嵌入式微处理器、外围硬件设备、嵌入式操作系统以及用户应用程序4个部分组成。“嵌入性”、“专用性”与“计算机系统”是嵌入式系统的三个基本要素,对象系统则是指嵌入式系统所嵌入的宿主系统。1.2嵌入式系统发展趋势从单片机的出现到今天各种嵌入式微处理器、微控制器的广泛应用,嵌入式系统的应用可以追溯到20世纪60年代中期,例如阿波罗飞船的导航控制系统AGC(ApolloGuidanceComputer)。嵌入式系统的发展历程,大致经历了以下4个阶段。(1)无操作系统阶段(2)简单操作系统阶段(3)实时操作系统阶段(4)面向Internet阶段1.3嵌入式系统的组成嵌入式系统通常由包含有嵌入式处理器、嵌入式操作系统、应用软件和外围设备接口的嵌入式计算机系统和执行装置(被控对象)组成。嵌入式计算机系统是整个嵌入式系统的核心,可以分为硬件层、中间层、系统软件层和应用软件层。执行装置接受嵌入式计算机系统发出的控制命令,执行所规定的操作或任务。1.嵌入式计算机系统的硬件层硬件层中包含嵌入式微处理器、存储器(SDRAM、ROM、Flash等)、通用设备接口和I/O接口(A/D、D/A、I/O等)。硬件层通常是一个以嵌入式处理器为中心的,包含有电源电路、时钟电路和存储器电路的电路模块,其中操作系统和应用程序都固化在模块的ROM中。(1)嵌入式微处理器嵌入式微处理器是嵌入式系统硬件层的核心,嵌入式微处理器将通用CPU中许多由板卡完成的任务集成到芯片内部,从而有利于系统设计趋于小型化、高效率和高可靠性。嵌入式微处理器大多工作在为特定用户群所专门设计的系统中。嵌入式微处理器的体系结构可以采用冯·诺依曼体系结构或哈佛体系结构,指令系统可以选用精简指令系统(ReducedInstructionSetComputer,RISC)和复杂指令集系统CISC(ComplexInstructionSetComputer,CISC)。嵌入式微处理器有各种不同的体系,目前全世界嵌入式微处理器已经超过1000多种,体系结构有30多个系列,其中主流的体系有ARM、MIPS、PowerPC、X86等。即使在同一体系中,也可以具有不同的时钟频率、数据总线宽度、接口和外设。目前没有一种嵌入式微处理器可以主导市场,嵌入式微处理器的选择是根据具体的应用而决定的。(2)存储器嵌入式系统的存储器包含Cache、主存储器和辅助存储器,用来存放和执行代码。①Cache是一种位于主存储器和嵌入式微处理器内核之间的快速存储器阵列,存放的是最近一段时间微处理器使用最多的程序代码和数据。Cache一般集成在嵌入式微处理器内,可分为数据Cache、指令Cache或混合Cache,Cache的存储容量大小依不同处理器而定。②主存储器用来存放系统和用户的程序及数据,是嵌入式微处理器能直接访问的存储器。主存储器包含有ROM和RAM,可以位于微处理器的内部或外部。常用的ROM类存储器有NORFlash、EPROM和PROM等,RAM类存储器有SRAM、DRAM和SDRAM等,容量为256KB~1GB。③辅助存储器通常指硬盘、NANDFlash、CF卡、MMC和SD卡等,用来存放大数据量的程序代码或信息,一般容量较大,但读取速度与主存相比要慢一些。(3)通用设备接口和I/O接口嵌入式系统通常具有与外界交互所需要的通用设备接口,如GPIO、A/D(模/数转换接口)、D/A(数/模转换接口)、RS-232接口(串行通信接口)、Ethernet(以太网接口)、USB(通用串行总线接口)、音频接口、VGA视频输出接口、I2C(现场总线)、SPI(串行外围设备接口)和IrDA(红外线接口)等。

2.中间层中间层也称为硬件抽象层(HardwareAbstractLayer,HAL)或板级支持包(BoardSupportPackage,BSP),位于硬件层和软件层之间,将系统上层软件与底层硬件分离开来。BSP作为上层软件与硬件平台之间的接口,需要为操作系统提供操作和控制具体硬件的方法。不同的操作系统具有各自的软件层次结构,BSP需要为不同的操作系统提供特定的硬件接口形式。BSP使上层软件开发人员无需关心底层硬件的具体情况,根据BSP层提供的接口即可进行开发。BSP是一个介于操作系统和底层硬件之间的软件层次,包括了系统中大部分与硬件联系紧密的软件模块。BSP一般包含相关底层硬件的初始化、数据的输入/输出操作和硬件设备的配置等功能。(1)嵌入式系统硬件初始化系统初始化过程按照自底向上、从硬件到软件的次序依次可以分为片级初始化、板级初始化和系统级初始化3个主要环节。①片级初始化是一个纯硬件的初始化过程,包括设置嵌入式微处理器的核心寄存器和控制寄存器、嵌入式微处理器核心工作模式和嵌入式微处理器的局部总线模式等。②板级初始化是一个同时包含软硬件两部分在内的初始化过程,完成嵌入式微处理器以外的其他硬件设备的初始化,设置某些软件的数据结构和参数,为随后的系统级初始化和应用程序的运行建立硬件和软件环境。

③系统级初始化主要进行操作系统的初始化。BSP将对嵌入式微处理器的控制权转交给嵌入式操作系统,由操作系统完成余下的初始化操作。最后,操作系统创建应用程序环境,并将控制权交给应用程序的入口。

(2)硬件相关的设备驱动程序BSP中包含硬件相关的设备驱动程序,但是这些设备驱动程序通常不直接由BSP使用,而是在系统初始化过程中由BSP将他们与操作系统中通用的设备驱动程序关联起来,并在随后的应用中由通用的设备驱动程序调用,实现对硬件设备的操作。

3.系统软件层系统软件层通常包含有嵌入式操作系统(EmbeddedOperatingSystem,EOS)、文件系统、网络系统及通用组件模块组成。(1)嵌入式操作系统EOS除具备了一般操作系统最基本的任务调度、同步机制、中断处理、文件处理等功能外,还具有如下特点:强实时性;支持开放性和可伸缩性的体系结构,具有可裁减性;提供统一的设备驱动接口;支持TCP/IP协议及其他协议,提供TCP/UDP/IP/PPP协议支持及统一的MAC访问层接口,提供强大的网络功能;嵌入式操作系统的用户接口通过系统的调用命令向用户程序提供服务;嵌入式系统一旦开始运行就不需要用户过多的干预;嵌入式操作系统和应用软件被固化在嵌入式系统计算机的ROM中;具有良好的硬件适应性(可移植性)。(2)文件系统嵌入式文件系统主要提供文件存储、检索和更新等功能。嵌入式文件系统通常支持FAT32、JFFS2、YAFFS等几种标准的文件系统,一些嵌入式文件系统还支持自定义的实时文件系统。嵌入式文件系统以系统调用和命令方式提供文件的各种操作,如设置、修改对文件和目录的存取权限,提供建立、修改、改变和删除目录等服务,提供创建、打开、读写、关闭和撤销文件等服务。4.应用软件层应用软件层用来实现对被控对象的控制功能,由所开发的应用程序组成,面向被控对象和用户。1.4实时系统RTOS与通用计算机系统不同,要求系统中的任务不但执行结果要正确,而且必须在一定的时间约束(Deadline)内完成。在RTOS中,一个逻辑上正确的计算结果,若其产生的时间晚于某个规定的时间,那么也认为系统的行为是不正确的。1.RTOS定义RTOS是指能够在指定或者确定的时间内完成系统功能和对外部或内部、同步或异步时间做出响应的系统,系统能够处理和存储控制系统所需要的大量数据。RTOS的正确性不仅依赖于系统计算的逻辑结果,还依赖于产生这个结果的时间。2.RTOS特点(1)约束性RTOS任务的约束包括时间约束、资源约束、执行顺序约束和性能约束。RTOS的任务具有时间约束性。时间约束性可分为“硬实时”和“软实时”。硬实时是指在航空航天、军事、核工业等一些关键领域中应用的系统,时间要求必须能够得到完全满足,否则将造成不可预计的结果。软实时通常是指在监控系统、信息采集系统等某些应用中,有时间约束要求,但偶尔违反不会造成严重影响。资源约束是指多个实时任务共享有限的资源时,必须按照一定的资源访问控制协议进行同步,以避免死锁和高优先级任务被低优先级任务堵塞的时间(即优先级倒置时间)不可预测。执行顺序约束是指各任务的启动和执行必须满足一定的时间和顺序约束。例如,在分布式端到端(end-to-end)实时系统中,同一任务的各子任务之间存在前驱/后继约束关系,需要执行同步协议来管理子任务的启动和控制子任务的执行,使它们满足时间约束和系统可调度性要求。性能约束是指必须满足如可靠性、可用性、可预测性、服务质量(QualityofService,QoS)等性能指标。(2)可预测性可预测性是指RTOS完成实时任务所需要的执行时间应是可知的。(3)可靠性大多数RTOS要求有较高的可靠性,要求系统在最坏情况下都能正常工作或避免损失。可靠性是RTOS的重要性能指标。(4)交互性外部环境是RTOS不可缺少的一个组成部分,外部环境往往是被控子系统,两者相互作用构成完整的实时系统。3.RTOS调度给定一组实时任务和系统资源,确定每个任务何时何地执行的整个过程就是调度。而RTOS中调度的目的则是要尽可能地保证每个任务满足它们的时间约束,及时对外部请求做出响应。实时调度技术常用的有以下两种。(1)抢占式调度和非抢占式调度抢占式调度通常是优先级驱动的调度。每个任务都有优先级,任何时候具有最高优先级且已启动的任务先执行。抢占式调度实时性好、反应快,调度算法相对简单,可优先保证高优先级任务的时间约束,其缺点是上下文切换多。而非抢占式调度是指不允许任务在执行期间被中断,任务一旦占用微处理器就必须执行完毕或自愿放弃,其优点是上下文切换少,缺点是微处理器有效资源利用率低,可调度性不好。(2)静态表驱动策略和优先级驱动策略静态表驱动策略是一种离线调度策略,指在系统运行前根据各任务的时间约束及关联关系,采用某种搜索策略生成一张运行时刻表。在系统运行时,调度器只需根据这张时刻表启动相应的任务即可。4.RTOS分类RTOS主要分为强实时(HardReal-Time)系统和弱实时(SoftReal-Time)系统两类。强实时系统应用在航空航天、军事、核工业等领域中,弱实时系统如视频点播系统、信息采集与检索系统等。5.实时任务分类实时任务的分类方法有多种根据任务的周期划分,可以分为周期任务、偶发任务和非周期任务3类。根据是否允许任务超时,以及超时后对系统造成的影响,任务又分为强实时任务、准实时任务、弱实时任务和弱一强实时任务4类。2嵌入式微处理器体系结构2.1冯·诺依曼结构与哈佛结构1.冯·诺依曼(VonNeumann)结构冯·诺依曼结构的计算机由CPU和存储器构成,其程序和数据共用一个存储空间,程序指令存储地址和数据存储地址指向同一个存储器的不同物理位置;采用单一的地址及数据总线,程序指令和数据的宽度相同。程序计数器(PC)是CPU内部指示指令和数据的存储位置的寄存器。CPU通过程序计数器提供的地址信息,对存储器进行寻址,找到所需要的指令或数据,然后对指令进行译码,最后执行指令规定的操作。处理器执行指令时,先从储存器中取出指令解码,再取操作数执行运算,即使单条指令也要耗费几个甚至几十个周期,在高速运算时,在传输通道上会出现瓶颈效应。使用冯.诺依曼结构的CPU和微控制器有Intel公司的8086系列及其他CPU,ARM公司的ARM7、MIPS公司的MIPS处理器等。2.哈佛(Harvard)结构哈佛结构的主要特点是将程序和数据存储在不同的存储空间中,即程序存储器和数据存储器是两个相互独立的存储器,每个存储器独立编址、独立访问。系统中具有程序的数据总线与地址总线,数据的数据总线与地址总线。这种分离的程序总线和数据总线可允许在一个机器周期内同时获取指令字(来自程序存储器)和操作数(来自数据存储器),从而提高执行速度,提高数据的吞吐率。又由于程序和数据存储器在两个分开的物理空间中,因此取指和执行能完全重叠,具有较高的执行效率。目前使用哈佛结构的CPU和微控制器品种有很多,有摩托罗拉公司的MC68系列、Zilog公司的Z8系列、ATMEL公司的AVR系列和ARM公司的ARM9、ARM10和ARM11等。2.2精简指令集计算机早期的计算机采用复杂指令集计算机(ComplexInstructionSetComputer,CISC)体系,例如Intel公司的X86系列CPU,从8086到Pentium系列,采用的都是典型的CISC体系结构。采用CISC体系结构的计算机各种指令的使用频率相差悬殊,统计表明,大概有20%的比较简单的指令被反复使用,使用量约占整个程序的80%;而有80%左右的指令则很少使用,其使用量约占整个程序的20%,即指令的2/8规律。在CISC中,为了支持目标程序的优化,支持高级语言和编译程序,增加了许多复杂的指令,用一条指令来代替一串指令。通过增强指令系统的功能,简化软件,确增加了硬件的复杂程度。而这些复杂指令并不等于有利于缩短程序的执行时间。在VLSI制造工艺中要求CPU控制逻辑具有规整性,而CISC为了实现大量复杂的指令,控制逻辑极不规整,给VLSI工艺造成很大困难。精简指令集计算机(ReducedInstructionSetComputer,RISC)体系结构是在CISC的基础上产生并发展起来的,RISC的着眼点不是简单地放在简化指令系统上,而是通过简化指令系统使计算机的结构更加简单合理,从而提高运算效率。在RISC中,优先选取使用频率最高的、很有用但不复杂的指令,避免使用复杂指令;固定指令长度,减少指令格式和寻址方式种类;指令之间各字段的划分比较一致,各字段的功能也比较规整;采用Load/Store指令访问存储器,其余指令的操作都在寄存器之间进行;增加CPU中通用寄存器数量,算术逻辑运算指令的操作数都在通用寄存器中存取;大部分指令控制在一个或小于一个机器周期内完成;以硬布线控制逻辑为主,不用或少用微码控制;采用高级语言编程,重视编译优化工作,以减少程序执行时间。2.3流水线技术1.流水线的基本概念流水线技术应用于计算机系统结构的各个方面,流水线技术的基本思想是将一个重复的时序分解成若干个子过程,而每一个子过程都可有效地在其专用功能段上与其他子过程同时执行。在流水线技术中,流水线要求可分成若干相互联系的子过程,实现子过程的功能所需时间尽可能相等。形成流水处理,需要一段准备时间。指令流发生不能顺序执行时,会使流水线过程中断,再形成流水线过程则需要时间。指令流水线就是将一条指令分解成一连串执行的子过程,例如把指令的执行过程细分为取指令、指令译码、取操作数和执行4个子过程。在CPU中把一条指令的串行执行子过程变为若干条指令的子过程在CPU中重叠执行。如果能做到每条指令均分解为m个子过程,且每个子过程的执行时间都一样,则利用此条流水线可将一条指令的执行时间T由原来的T缩短为T/m。指令流水线处理的时空图如图1.2.1所示,其中的1、2、3、4、5表示要处理的5条指令。从图可见采用流水方式可同时执行多条指令。图1.2.1指令流水线处理的时空图2.流水线处理机的主要指标(1)吞吐率在单位时间内,流水线处理机流出的结果数称为吞吐率。对指令而言就是单位时间里执行的指令数。如果流水线的子过程所用时间不一样长,则吞吐率P应为最长子过程的倒数,即:(2)建立时间流水线开始工作,须经过一定时间才能达到最大吞吐率,这就是建立时间。若m个子过程所用时间一样,均为t0,则建立时间T0=mΔt0。2.4信息存储的字节顺序1.大端和小端存储法大多数计算机使用8位(bit)的数据块做为最小的可寻址的存储器单位,称为一个字节。存储器的每一个字节都用一个唯一的地址(address)来标识。所有可能地址的集合称为存储器空间。对于一个多字节类型的数据,在存储器中有两种存放方法。低字节数据存放在内存低地址处,高字节数据存放在内存高地址处,称为小端字节顺序存储法;高字节数据存放在内存低地址处,低字节数据存放在内存高地址处,称为大端字节顺序存储法。例如,假设一个32位字长的微处理器上定义一个int类型的常量a,其内存地址位于0x6000处,其值用十六进制表示为0x23456789。如图1.2.2(a)所示,如果按小端法存储,则其最低字节数据0x89存放在内存低地址0x6000处,最高字节数据0x23存放在内存高地址0x6003处。如图1.2.2(b)所示,如果按大端法存储,则其最高字节数据0x23存放在内存的低地址0x6000处,而最低字节数据0x89存放在内存的高地址0x6003处。地址0x60000x60010x60020x6003数据(十六进制)0x890x670x450x23数据(二进制)01100111010001010010001100000001(a)小端存储法地址0x60000x60010x60020x6003数据(十六进制)0x230x450x670x89数据(二进制)01100111010001010010001100000001(b)大端存储法图1.2.2大端和小端存储法示例采用大端存储法还是小端存储法,各处理器厂商的立场和习惯不同,并不存在技术原因。Intel公司X86系列的微处理器都采用小端存储法,而IBM、Motorola和SunMicrosystems公司的大多数微处理器采用大端存储法。此外,还有一些微处理器,如ARM、MIPS和Motorola的PowerPC等,可以通过芯片上电启动时确定的字节存储顺序规则,来选择存储模式。对于大多数程序员来言,机器的字节存储顺序是完全不可见的,无论哪一种存储模式的微处理器编译出的程序都会得到相同的结果。不过,当不同存储模式的微处理器之间通过网络传送二进制数据时,在有些情况下,字节顺序会成为问题,会出现所谓的“UNIX”问题。字符“UNIX”在16位字长的微处理器上被表示为两个字节,当被传送到不同存储模式的机器上时,则会变为“NUXI”。为了避免这类问题,网络应用程序代码编写必须遵循已建立好的关于字节顺序的规则,以保证发送方微处理器先在其内部将发送的数据转换成网络标准,而接收方微处理器再将网络标准转换为它的内部表示。2.可移植性问题当在不同存储顺序的微处理器间进行程序移植时,要特别注意存储模式的影响。把从软件得到的二进制数据写成一般的数据格式往往会涉及到存储顺序的问题。3.通信中的存储顺序问题在网络通信中,Internet协议(即IP协议)定义了标准的网络字节顺序。该字节顺序被用于所有设计使用在IP协议上的数据包、高级协议和文件格式上。很多网络设备也存在存储顺序问题:即字节中的位采用大端法(最重要的位优先)或小端法(最不重要的位优先)发送。这取决于OSI模型最底层的数据链路层。4.数据格式的存储顺序一个典型的例子就是日期表示方法,不同的国家采用不同的表示方法,美国和其他一些国家,日期格式顺序一般是:月一日一年(如:12月24日2007年或12/24/2007),这是中间表示法。在世界大部分国家中,包括除瑞典、拉脱维亚和匈牙利之外的欧洲,日期格式为:日一月一年(比如24日12月2007或12/24/2007),这是小端表示法。中国、日本和ISO8601国际正式标准顺序的日期顺序排列顺序是;年一月一日(比如2007年12月24日或2007-12-24),这是大端表示法。在ISO8601中年份必须用4位数字表示,月份和日数分别用两位表示。因此,个位数的日和月必须在前面填补一个零,如01,02,…,09等。3嵌入式微处理器的结构和类型3.1嵌入式微控制器嵌入式微控制器(MicroControllerUnit,MCU)又称为单片机,芯片内部集成ROM、EPROM、RAM、总线、总线逻辑、定时/计数器、看门狗、I/O、串行口、脉宽调制输出(PWM)、A/D、D/A、Flash、EEPROM等各种必要功能和外设。嵌入式微控制器具有单片化、体积小、功耗和成本低,可靠性高等特点,约占嵌入式系统市场份额的70%。嵌入式微控制器品种和数量很多,典型产品有8051、MCS-251、MCS-96/196/296、C166/167、68K系列,TI公司的MSP430系列和Motorola公司的68H12系列,以及MCU8XC930/931、C540、C541,并且有支持I2C、CAN-BUS、LCD及众多专用嵌入式微控制器和兼容系列。3.2嵌入式微处理器嵌入式微处理器(EmbeddedMicroProcessingUnit,EMPU)由通用计算机中的CPU发展而来,嵌入式微处理器只保留和嵌入式应用紧密相关的功能硬件,去除其他的冗余功能部分,以最低的功耗和资源实现嵌入式应用的特殊要求。目前主流的32位嵌入式微处理器系列主要有ARM系列、MIPS系列、PowerPC系列等。属于这些系列的嵌入式微处理器产品很多,有千种以上。1.ARM系列ARM(AdvancedRISCMachine)公司的ARM微处理器体系结构目前被公认为是嵌入式应用领域领先的32位嵌入式RISC微处理器结构。ARM体系结构目前发展并定义了7种不同的版本。从版本1到版本7,ARM体系的指令集功能不断扩大。ARM处理器系列中的各种处理器,虽然在实现技术、应用场合和性能方面都不相同,但只要支持相同的ARM体系版本,基于它们的应用软件是兼容的。表1.3.1给出了ARM体系结构各版本的特点。目前,70%的移动电话、大量的游戏机、手持PC和机顶盒等都已采用了ARM处理器,许多一流的芯片厂商都是ARM的授权用户,如Samsung、TI、Freescale、ST等公司。版本ARM处理器系列特点ARMv1ARM1该版体系结构只在原型机ARM1出现过,没有用于商业产品。基本性能:•基本的数据处理指令(无乘法)•26位寻址ARMv2ARM2和ARM3该版体系结构对ARMv1版进行了扩展,版本ARMv2a是v2版的变种,ARM3芯片采用了ARMv2a。ARMv2版增加了以下功能:•32位乘法和乘加指令•支持32位协处理器操作指令•快速中断模式表1.3.1ARM体系结构版本及特点ARMv3ARMv3MARM6、ARM7DI、ARM7MARMv3版体系结构对ARM体系结构作了较大的改动:•寻址空间增至32位(4GB)•独立的当前程序状态寄存器CPSR和程序状态保存寄存器SPSR,保存程序异常中断时的程序状态,以便于对异常的处•增加了异常中断(Abort)和未定义两种处理器模式•增加了MMU支持•ARMv3M增加了有符号和无符号长乘法指令ARMv4ARMv4TStrongARM、ARM7TDMI、ARM9TARMv4版体系结构是目前应用最广的ARM体系结构,在v3版上作了进一步扩充,指令集中增加了以下功能:•增加了系统模式•增加了16位Thumb指令集•完善了软件中断SWI指令的功能•不再支持26位寻址模式ARMv5TEARMv5TEJARM9E、ARM10E、Xscale、ARM7EJ、ARM926EJARMv5版体系结构在ARMv4版基础上增加了一些新的指令,包括:•增加ARM与Thumb状态之间切换的指令•增强乘法指令和快速乘累加指令•增加了数字信号处理指令(ARMv5TE版)•增加了Java加速功能(ARMv5TEJ版)ARMv6ARM11ARMv6版体系结构是2001年发布的,首先在ARM11处理器中使用。此体系结构在ARMv5版基础上增加了以下功能:•Thumb-2增强代码密度•SIMD增强媒体和数字处理功能•TrustZone

提供增强的安全性能•IEM提供增强的功耗管理功能ARMv7Cortex系列ARMv7版体系结构定义了3种不同的微处理器系列:•A系列为面向应用的微处理器核,支持复杂操作系统和用户应用•R系列为深度嵌入的微处理器核,针对实时系统应用•M系列为微控制核,针对成本敏感的嵌入式控制应用2.MIPS系列美国斯坦福大学的Hennessy教授领导的研究小组研制的MIPS(MicroprocessorwithoutInterlockedPipedStages,无互锁流水级的微处理器)是世界上很流行的一种RISC处理器,其机制是尽量利用软件办法避免流水线中的数据相关问题。从20世纪80年代初期MIPS处理器发明到现在的这20多年里,MIPS处理器以其高性能的处理能力被广泛应用于宽带接入、路由器、调制解调设备、电视、游戏、打印机、办公用品、DVD播放等广泛的领域。和ARM公司一样,MIPS公司本身并不从事芯片的生产活动(只进行设计),不过其他公司如果要生产该芯片,则必须得到MIPS公司的许可。MIPS32位处理器内核系列和特点如表1.3.2所示。内核特点M4KTM系列针对多CPU集成的SOC应用领域为下一代消费类产品、下一代网络和宽带产品

M4KTM系列4KpTM、4KcTM内核针对SOC系统优化,其内存、指令缓存和数据缓存都可以根据具体应用调整大小

M4KTM系列4KEpTM、4KEmTM和4KEcTM内核与4KTM系列类似,但能提供更高性能,在同样时钟频率下指令执行周期更短

4KSTM系列4KScTM和4KSdTM内核针对数据通信的应用。其特点是采用了SmartMIPSTM结构,拥有反黑客的特性,可以让数据加密更加快速,在网络处理、智能卡、机顶盒等方面有广泛应用表1.3.2MIPS32位处理器内核系列和特点ProSeriesTM系列M4KProTM、4KEProTM、4KEmProTM、4KEcProms和4KSdProTM内核该系列内核允许SOC的设计者创造自己的CorExtendTM扩

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论