2022年2月5日内容几何概型_第1页
2022年2月5日内容几何概型_第2页
2022年2月5日内容几何概型_第3页
2022年2月5日内容几何概型_第4页
2022年2月5日内容几何概型_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

几何概型例1.(2022年全国卷I理)下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则()A.p1=p2B.p1=p3C.p2=p3D.p1=p2+p3【答案】A【解析】设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.例2.(2022·湖北高三月考(理))1777年法国著名数学家蒲丰曾提出过著名的投针问题,此后人们根据蒲丰投针原理,运用随机模拟方法可以估算圆周率π的近似值.请你运用所学知识,解决蒲丰投针问题:平面上画着一些平行线,它们之间的距离都等于(),向此平面任投一根长度为的针,已知此针与其中一条线相交的概率是,则圆周率的近似值为()A. B. C. D.【答案】C例3.(2022·河北高一期末)七巧板是古代中国劳动人民的发明,到了明代基本定型.清陆以湉在《冷庐杂识》中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.如图,在七巧板拼成的正方形内任取一点,则该点取自图中阴影部分的概率是()A. B.C. D.【答案】B例4.(2022课标1,理)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A. B.C. D.【答案】B例5.(2022届江西省临川一中模拟)已知三地在同一水平面内,地在正东方向处,地在地正北方向处,某测绘队员在之间的直线公路上任选一点作为测绘点,用测绘仪进行测绘,地为一磁场,距离其不超过的范围内会对测绘仪等电子仪等电子仪器形成干扰,使测量结果不准确,则该测绘队员能够得到准确数据的概率是()A.B.C.D.【答案】A例6.(2022届河北省武邑中学四模)在平面区域内随机取一点,则点在圆内部的概率()A.B.C.D.【答案】B例7.(2022届安徽省淮南市二模)已知是边长为2的正三角形,在内任取一点,则该点落在内切圆内的概率是()A.B.C.D.【答案】D例8.(2022届安徽省安庆市第一中学热身)在上任取一个个实数,则事件“直线与圆”相交的概率为()A.B.C.D.【答案】C例9.(2022届四川省梓潼中学校高考模拟(二))已知圆柱的底面半径为,高为,若区域表示圆柱及其内部,区域表示圆柱内到下底面的距离大于的点组成的集合,若向区域中随机投一点,则所投的点落入区域中的概率为()A.B.C.D.【答案】C例10.(2022·北京高三月考)众所周知的“太极图”,其形状如对称的阴阳两鱼互抱在一起,因而也被称为“阴阳鱼太极图”.如图是放在平面直角坐标系中的“太极图”,整个图形是一个圆形,其中黑色阴影区域在y轴右侧部分的边界为一个半圆.给出以下命题:①在太极图中随机取一点,此点取自黑色阴影部分的概率是;②当时,直线与黑色阴影部分有公共点;③当时,直线与黑色阴影部分有两个公共点.其中所有正确结论的序号是()A.① B.② C.③ D.①②【答案】D【解析】①:因为阴影部分的面积是圆的面积一半,所以在太极图中随机取一点,此点取自黑色阴影部分的概率的大小为,故本结论是正确的;②:当时,阴影部分在第一象限内半圆的圆心坐标为,半径为1,它到直线的距离为,所以直线与半圆相切,因此直线与黑色阴影部分有公共点,故本结论是正确的;③:当时,直线表示横轴,此时直线与阴影部分有无穷多个交点,故本结论是错误的,因此只有结论①②是正确的,故本题选D.【强化题】1.(2022·河北高二月考)已知函数,若在上随机取一个实数,则的概率为()A. B. C. D.【答案】B2.(2022·陕西西安中学高二期中(理))某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是()A. B. C. D.【答案】B3.(2022·四川高三月考(理))古希腊数学家希波克拉底研究过这样一个几何图形(如图):分别以等腰直角三角形的三边为直径作半圆,则在整个图形内任意取一点,该点落在阴影部分的概率为()A. B. C. D.【答案】C4.(2022·江西白鹭洲中学高三月考(理))如图所示是一枚8克圆形金质纪念币,直径,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是()A. B. C. D.【答案】B5.(2022届四川省成都市模拟(一))把一根长为6米的细绳任意做成两段,则稍短的一根细绳的长度大于2米的概率是()A.B.C.D.【答案】D6.(2022届安徽省江南十校冲刺联考(二模))不等式所表示的区域为,函数的图象与轴所围成的区域为.向内随机投一个点,则该点落到内概率为()A.B.C.D.【答案】A7.(2022届山东省名校联盟一模)七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形,一块中三角形和两块全等的大三角形),一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,若向正方形内随机抛掷2000颗米粒(大小忽略不计),则落在图中阴影部分内米粒数大约为()A.750B.500C.375D.250【答案】C8.(2022届广东省东莞市考前演练)如图1,风车起源于周,是一种用纸折成的玩具.它用高粱秆,胶泥瓣儿和彩纸扎成,是老北京的象征,百姓称它吉祥轮.风车现已成为北京春节庙会和节俗活动的文化标志物之一.图2是用8个等腰直角三角形组成的风车平面示意图,若在示意图内随机取一点,则此点取自黑色部分的概率为()A.B.C.D.【答案】B9.(2022届安徽省江南十校冲刺联考(二模))已知实数,则函数在定义域内单调递减的概率为()A.B.C.D.【答案】C【解析】由题意,在时,恒成立,即,又,当且仅当,即时等号成立,即的最小值为3,∴,从而,∴所求概率为.10.(2022届河南省郑州外国语学校第十五次调研)已知在矩形中,,现在矩形内任意取一点,则的概率为()A.B.C.D.【答案】B11.(2022届山东省潍坊市三模)三国时期吴国的数学家赵爽曾创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个全等的直角三角形与中间的小正方形拼成一个大正方形,其中一个直角三角形中较小的锐角满足,现向大正方形内随机投掷一枚飞镖,则飞镖落在小正方形内的概率是()A.B.C.D.【答案】D12.(2022届山西省运城市康杰中学高考模拟(一))在圆的一条直径上,任取一点作与该直径垂直的弦,则其弦长超过该圆的内接等边三角形的边长的概率为()A.B.C.D.【答案】C13.(2022届河南省巩义市市直高中下学期模拟)已知点,在:上随机取一点,则的概率为__________.【答案】14.(2022·湖南长郡中学高二期中)在平面区域内任取一点,若满足的概率大于,则的取值范围是______.【答案】15.(20

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论